OHSU-S-87-002

CLEAR TECHNICAL REPORT NO. 305

A Determination of the Optimal Sampling Strategy for Assessing Open Lake Water Quality and Tracking Trends in the Western Basin of Lake Erie

Prepared by

6

1

R.

Laura A. Fay and David E. Rathke

Prepared for

United States Environmental Protection Agency Great Lakes National Program Office Region V, Chicago, Illinois Grant No. R005815-01

Project Officer: David C. Rockwell

THE OHIO STATE UNIVERSITY CENTER FOR LAKE ERIE AREA RESEARCH COLUMBUS, OHIO

July 1987

TABLE OF CONTENTS

List of Tables	2
List of Figures	5 8
Acknowledgments	8
Executive Summary	9
Introduction and Methods	10
Study Objectives	10
General Basin Description	10
Study Plan	13
Results and Discussion	14
Data Base Inventory	14
Tempera ture	15
Conductivity	15
Chloride	15
Sulfate	16
Dissolved Oxygen	16
Percent Dissolved Oxygen Saturation	16
pH	16
Turbidity	16
Secchi	17
Total Suspended Solids	17
Total Phosphorus	17
Total Dissolved Phosphorus	17
Dissolved Phosphorus (Ortho)	17
Nitrate + Nitrite	18
Ammonia	18
Total Inorganic Nitrogen	18
Kjeldahl Nitrogen Diegolused Silies	18
Dissolved Silica	18
Chlorophyll a (Corrected and Uncorrected)	18
Pheophytin Data Quality	19
Means Versus Medians	19 19
Cluster Analysis	20
Single Variable Clusters	20
Multi-Variable Clustering	21
Results From the Multi-Variable Cluster Routine	25
Sampling Strategy for Future Data Collection	20
Recommendations	29
Tables	30
Figures	30 79
Bibliography	122
	122

A

3

3

 \frown

 \sim

 $\widehat{}$

3

PAGE 2

PAGE NO.

LIST OF TABLES

M

M

3

1

7

 \land

Â

1

- (TA)

P

1.	Summary of STORET Western Basin Data Inventory, 1947 - 1984.	31
2.	Annual and Seasonal Data Base Inventory, Temperature (°C) - Western Basin.	35
3.	Annual and Seasonal Data Base Inventory, Conductivity at 25 °C (umhos/cm) Western Basin.	36
4.	Annual and Seasonal Data Base Inventory, Chloride (mg/l) - Western Basin.	3 7
5.	Annual and Seasonal Data Base Inventory, Sulfate (mg/l) - Western Basin.	38
6.	Annual and Seasonal Data Base Inventory, Dissolved Oxygen (mg/l) - Western Basin.	39
7.	Annual and Seasonal Data Base Inventory, Dissolved Oxygen Percent Saturation - Western Basin.	40
8.	Annual and Seasonal Data Base Inventory, pH (Standard Units) - Western Basin.	41
9.	.Annual and Seasonal Data Base Inventory, Turbidity (JTU) - Western Basin.	42
10.	Annual and Seasonal Data Base Inventory, Turbidity (NTU) - Western Basin.	43
11.	Annual and Seasonal Data Base Inventory, Secchi (meters)- Western Basin.	44
12.	Annual and Seasonal Data Base Inventory, Total Suspended Solids (mg/l) - Western Basin.	45
13.	Annual and Seasonal Data Base Inventory, Total Phosphorus (ug/l) - Western Basin.	46
14.	Annual and Seasonal Data Base Inventory, Total Dissolved Phosphorus (ug/l) - Western Basin.	47
15.	Annual and Seasonal Data Base Inventory, Orthophosphorus (ug/l) - Western Basin.	48
16.	Annual and Seasonal Data Base Inventory, Nitrate + Nitrite (ug/l) - Western Basin.	49
17.	Annual and Seasonal Data Base Inventory, Ammonia (ug/1)- Western Basin.	50

PAGE 3

LIST OF TABLES

18.	Annual and Seasonal Data Base Inventory, Total Inorganic Nitrogen (ug/l) - Western Basin.	51
19.	Annual and Seasonal Data Base Inventory, Kjeldahl Nitrogen (ug/l) - Western Basin.	52
20.	Annual and Seasonal Data Base Inventory, Dissolved Silica (mg/l) - Western Basin.	53
21.	Annual and Seasonal Data Base Inventory, Uncorrected Chlorophyll <u>a</u> (ug/l) - Western Basin.	_, 54
22.	Annual and Seasonal Data Base Inventory, Corrected Chlorophyll <u>a</u> (ug/l) - Western Basin.	55
23.	Annual and Seasonal Data Base Inventory, Pheophytin (ug/l) - Western Basin.	56
24.	Preliminary Cluster Analysis, Chloride (mg/l),Western Basin, (N = 2 Through 20).	57
25.	Chloride, Five Clusters.	58
26.	Chloride, Six Clusters.	58
27.	Chloride, Seven Clusters.	59
28.	Chloride, Eight Clusters.	59
29.	Chloride, Nine Clusters.	60
30.	Chloride, Ten Clusters.	60
31.	Chloride, Eleven Clusters.	61
32.	Chloride, Twelve Clusters.	61
33.	Preliminary Cluster Analysis, Conductivity (umhos/cm), Western Basin (N = 2 Through 20).	62
34.	Preliminary Cluster Analysis, Chloride (mg/l), Western Basin, Seasonal Breakdown.	63
35.	Preliminary Cluster Analysis, Conductivity (umhos/cm), Western Basin, Seasonal Breakdown.	64
36.	Cluster Statistics Using Standardized Non-Transformed Chloride Data.	65

M

ß

 \sim

M

 \bigcirc

, *©*,

<u>_</u>

LIST OF TABLES

@

ি

<u></u>

 \sim

3

<u>,</u>

1

37.	Single Variable Cluster Statistics for Conductivity.	66
38.	Single Variable Cluster Statistics for Chloride.	67
39.	Single Variable Cluster Statistics for Turbidity.	68
40.	Single Variable Cluster Statistics for Total Suspended Solids.	69
41.	Single Variable Cluster Statistics for Total Phosphorus.	70
42.	Single Variable Cluster Statistics for Total Dissolved Filtered Phosphorus.	71
43.	Single Variable Cluster Statistics for Nitrate + Nitrite.	72
44.	Single Variable Cluster Statistics for Uncorrected Chlorophyll <u>a</u> .	73
45.	Cluster Statistics Using Standardized Log-Transformed Chloride Data.	74
46.	Cluster Statistics Using Standardized Non-Transformed Multi-Variable Data (N=5).	75
47.	Cluster Statistics Using Standardized Log-Transformed Multi-Variable Data (N=5).	76
48.	Comparison of the Individual Cluster Mean Concentrations with Computed Means and Medians for Each Variable.	77
49.	Clustering of the Homogeneous Zone Cluster To Determine The Number of Sampling Stations.	78

LIST OF FIGURES

1

-

i

 \wedge

 \land

1a.	Western Basin Bathymetery (Taken From Bartish, 1984).	80
16.	Dominant Surface Flow Patterns, Western Basin Lake Erie (Taken From Bartish, 1984).	81
2.	Cluster Analysis Flow Chart.	82
3.	Explanation of Median Plots (After Reckhow, 1980).	83
4.	Western Basin Median Monthly Temperature over the Period of Record (1947 - 1984).	_, 84
5.	Western Basin Median Monthly Conductivity Values over the Period of Record (1947 - 1984).	85
6.	Western Basin Median Monthly Concentrations of Chloride over the Period of Record (1947 - 1984).	86
7.	Western Basin Median Monthly Concentrations of Sulfate over the Period of Record (1947 - 1984).	87
8.	Western Basin Median Monthly Concentrations of Dissolved Oxygen over the Period of Record (1947 - 1984).	88
9.	Western Basin Median Monthly Dissolved Oxygen Percent Saturation over the Period of Record (1947 - 1984).	89
10.	Western Basin Median Monthly pH Values over the Period of Record (1947 - 1984).	90
11.	Western Basin Median Monthly Turbidity Values (JTU's) over the Period of Record (1947 - 1984).	91
12.	Western Basin Median Monthly Secchi Values over the Period of Record (1947 - 1984).	92
13.	Western Basin Median Monthly Concentrations of Total Suspended Solids over the Period of Record (1947 - 1984).	93
14.	Western Basin Median Monthly Concentrations of Total Phosphorus over the Period of Record (1947 - 1984).	94
15.	Western Basin Median Monthly Concentrations of Total Dissolved Phosphorus over the Period of Record (1947 - 1984).	95
16.	Western Basin Median Monthly Concentrations of Orthophosphorus over the Period of Record (1947 - 1984).	96

LIST OF FIGURES

 \sim

M

, M

1

1

ন

1

i Car

1

PAGE NO.

17.	Western Basin Median Monthly Concentrations of Nitrate + Nitrite over the Period of Record (1947 - 1984).	97
18.	Western Basin Median Monthly Concentrations of Ammonia over the Period of Record (1947 - 1984).	98
19.	Western Basin Median Monthly Concentrations of Total Inorganic Nitrogen over the Period of Record (1947 - 1984).	99
20.	Western Basin Median Monthly Concentrations of Kjeldahl Nitrogen over the Period of Record (1947 - 1984).	100
21.	Western Basin Median Monthly Concentrations of Total Dissolved Silica over the Period of Record (1947 - 1984).	101
22.	Western Basin Median Monthly Concentrations of Uncorrected Chlorophyll <u>a</u> over the Period of Record (1947 - 1984).	102
23.	Western Basin Median Monthly Concentrations of Corrected Chlorophyll over the Period of Record (1947 - 1984).	103
24.	Western Basin Median Monthly Concentrations of Pheophytin over the Period of Record (1947 - 1984).	104
25.	Demonstration of the Importance of Variable Selected on the Cluster Results.	105
26.	Western Basin Chloride Maximum Within-Cluster Seed Distance.	106
27.	Western Basin Conductivity Maximum Within-Cluster Seed Distance.	107
28.	Ratio of Between-Cluster to Within-Cluster Variance for Western Basin Conductivity.	108
29.	Appropriate Selection of Number of Clusters Utilizing the Cubic Clustering Criterion.	109
30.	Chloride Cluster Analysis Depicts a "Sensitive" Variable.	110
31.	Conductivity Cluster Analysis Depicts a "Non-Sensitive Variable.	111
32.	Initial Western Basin Homogeneous Area Determined by Multi-Variable Clustering Indicated Skewed Data.	112
33.	Corrected Chlorophyll a Western Basin Annual Mean Contour (ug/l) 1970 - 1982.	113
•		

LIST OF FIGURES

0

3

ŝ

1

A

1

185

1

	hosphorus Western Basin Annual Mean Contour 1970 - 1982.	114
35. Western 1979 (J	Lake Erie Surface Conductivity, Summer Survey uly).	115
36. Western 1979 (J	Lake Erie Surface Turbidity (NTU), Summer Survey uly).	116
	Lake Erie Surface Total Phosphorus (ug/l), Summer 1979 (August).	117
	Lake Erie Surface Corrected Chlorophyll <u>a</u> (ug/l), Survey 1979 (July).	118
	stem Construction For The Western Basin Multiple e Cluster Analysis.	119
	estern Basin Homogeneous Area Determined By ariable Cluster Analysis.	120
41. Western	Basin Homogeneous Area 1986 Station Locations.	121

•

ACKNOWLEDGMENTS

1

The authors would like to express their appreciation to all those who aided in completing this task. Special consideration is due to Abdel El-Shaarawi (CCIW-NWRI) for his assistance in understanding the fine art of cluster analysis and for reviewing the manuscript and to Kevin McGunagle (USEPA-LLRS) for accessing the western basin STORET data base. Paul Hsieh and Tian-Tzer Jeng provided the computer programming expertise to complete this project. John Mizera was kind enough to offer the benefit of his statistical experienc with clustering western basin Lake Erie nearshore data.

We would also like to acknowledge the financial support of the U.S. Environmental Protection Agency - Great Lakes National Program Office (Grant No. R005815-01) and our project officer, Mr. David Rockwell.

EXECUTIVE SUMMARY

This project was undertaken to define an offshore region in the western basin of Lake Erie that when sampled during future monitoring programs will provide information on water quality and aid in tracking long term trends. El-Shaarawi (1984), Rosa and Burns (1986) and Rosa (1986) have completed similar projects, defining central and eastern basin representative areas. Although the methods employed by these researchers varied, the zones that they defined were geographically very similar. The offshore central and eastern basin regions were selected based upon their epilimnion and hypolimnion stability.

The determination of an offshore region in the western basin is complicated by its shallowness and variable flow regime. As a result of its shallowness, storm activity creates a strong interaction between the water column and the unconsolidated sediments, with sediment resuspension frequently occurring. This introduces a great deal of variability into the water column chemisty. Another complication in defining a representative open water region is the variable mixing patterns between the high flow, oligotrophic water coming from the upper lakes via the Detroit River and the low flow, eutrophic water of the western basin tributaries (ie. Maumee River).

To deal with the diverse water quality of the western basin, the entire historical data base (1947-1984) obtained from STORET was examined and modified to accomodate the specific objectives of this study. The protocol developed by El-Shaarawi (1984) was utilized to cluster the data and determine the optimum offshore sampling region. The station pattern and the number of surveys to be sampled annually were determined via the clustering program, FASTCLUS (SAS).

Considerable effort was devoted to inventoring the STORET data base (Tables 1 - 23) and determining the variables with consistent quality and quantity for utilization in the multi-variable cluster. As with most statistical techniques, it is best to use variables that permit the formation of a complete matrix (ie. no missing values). Once the appropriate variables were determined, several preliminary tests were undertaken on the individual data sets in order to improve the performance of the clustering program. For example, standardization and log-transformation of the data were necessary prior to multi-variable clustering in order to eliminate biases in the calculation of Euclidean distance which result from differences in measurement.

After the offshore sampling region was defined, the resulting offshore cluster was subsequently sub-clustered to determine the appropriate number of stations necessary to adequately sample the region. Five stations, within the representative area, were sufficient (Table 49) to provide a standard deviation equivalent to the original cluster. The optimum number of surveys required to estimate the annual variability was determined on a seasonal basis. The spring season (April- May) was found to be the most variable period and therefore requires the greatest number of surveys. The summer had the lowest variance and the fall season was only slightly more variable. A minimum of seven surveys were recommended.

PAGE 10

INTRODUCTION AND METHODS

STUDY OBJECTIVES

This study was designed to determine a western basin representative offshore region to be used in the Lake Erie surveillance/monitoring program (GLISP, 1986). Based upon extensive data reviews and analysis of the central and eastern basins, surveillance/monitoring strategies have been established for these two areas (El-Shaarawi 1984, Rosa and Burns 1986, and Rosa 1986). These studies geographically defined and physically and chemically characterized an offshore region and ultimately developed a sampling protocol which could be used to characterize the open water region of the respective basin. This study is designed to yield similar information for the western basin.

GENERAL BASIN DESCRIPTION

The natural morphology of Lake Erie divides the lake into three distinct basins; western, central and eastern. The following descriptive information on the individual Lake Erie basins is taken from Burns (1976).

	Total Lake	West Basin	Central Basin	. East Basin
Surface Area (km2)	25,212.0	3,680.0	15,390.0	6,150.0
Volume (km3)	468.0	28.0	274.0	166.0
Mean Depth (m)	18.6	7.6	17.8	27.0
Max Depth (m)	64.0	14.0	26.0	64.0
Mean Residence Time (yr)	2.4	0.2	1.4	0.8

This report specifically focuses on the smallest and shallowest of the three basins, the western basin. This basin is boardered by the province of Ontario to the north and the states of Michigan and Ohio to the west and south respectively. The boundary between the western and central basins (Figure 1a) follows the 10 meter contour line (northeast - southwest) from Marblehead, Ohio to Pelee Point, Ontario (Sly 1976). The bottom morphology of the basin is generally flat with nearly 50% of the basin within the 5-10 meter contour. The surficial sediments are a mixture of sand, silt and clay, with clay comprising 40-60 percent (Thomas et al. 1976).

PAGE 11

The general circulation pattern through the western basin is dominated by the Detroit River flow, with approximately 80% of the water entering the basin orginating from this source. The flow from the Detroit River dominates the northern two-thirds of the basin while the Maumee River and the smaller southern tributaries influence the southern portion of the flow pattern (Figure 1b). The net western basin water movement is from west to east; entering the central basin through the north and south passages (north of Pelee Island and south of Kelley's Island). Nearly the entire volume contributed by the Detroit River leaves the basin through the north passage making this the dominant outflow channel (Saylor and Miller 1983).

The water quality in the offshore region of the western basin is considered to be the poorest of the three basins. It is not uncommon for phosphorus, nitrogen, suspended solids and chlorophyll concentrations to be two to three times the values encountered in the central and eastern basins. The poor water quality of the western basin can be attributed to the large metropolitan, industrial and agricultural development found within the basin watershed. This subsequently results in significant loads of nutrients and contaminants to the waters of the western basin.

The St. Clair / Detroit River Connecting Channel serves as the link between Lake Erie and the upper Great Lakes. The water quality leaving Lake Huron is quite good, being low in nutrients (ie. total phosphorus < 5 ug/l) and contaminants. However, from the time Lake Huron waters enter the connecting channel they receive a myriad of industrial and municipal wastes (IAGLR, 1985). Consequently, the connecting channel has been the major pollutant source to Lake Erie from the time the basin first became inhabited. Although the concentrations of many pollutants are low, the quantity of water leaving the Detroit River is so great (> 6,000 m3/sec) that the resultant loading to the western basin is quite significant.

Prior to the upgrading of the Detroit sewage treatment facility, the major single nutrient contributor to the basin was the Detroit River. During the late 1960's and the early 1970's the total phosphorus loading from the Detroit exceeded 20,000 mt/yr (Surveillance Work Group, 1983). However since the establishment of a new municipal treatment facility for the city of Detroit, the Detroit River phosphorus loading has decreased from a maximum in 1973 (13,169 mt/yr) to a low value of 4,799 mt/yr in 1980 (Yaksich et al, 1982).

In contrast to the connecting channel, the remaining tributaries emptying into the western basin are quite small in regard to flow and consequently have not been considered to have a significant basin wide effect.

TRIBUTARY	LOCATION	MEAN FLOW m ³ /sec
Detroit	Michigan/Ontario	6,000
Huron	Michigan	20
Raisin	Michigan	29
Ottawa	Michigan/Ohio	5
Maumee	Ohio	204
Portage	Ohio	16

1

<u></u>

Taken From GLISP (1986)

These small tributaries have always had significant localized effects, particularly since most rivers drain agricultural lands and serve as a waste depository for the local municipalities (ie. Maumee River - Toledo, Ohio). Even though it appears that the flow of these tributaries is insignificant in comparison with the Detroit River flow, the concentrations of nutrients and suspended matter are 5 to 10 times the concentrations found at the mouth of the Detroit River. These smaller rivers may not impact the western basin to the same degree as the Detroit River, however their combined input does have a significant effect. For example, during peak runoff (late February - March) satellite imagery of the basin clearly shows extensive plumes extending from the river mouths into the open waters of the basin (Lyon, 1987)

As mentioned previously, the western basin presents significantly different problems from those encountered in the central and eastern basins. Due to the very heterogeneous and complex nature of western basin water quality, the selection of an open water station pattern for surveillance/ monitoring is not a simple task. Three general statements can be made about the water quality of the basin.

- 1. The water quality in the northern section of the basin is better than that of the southern portion. This can be attributed to the dilution factor associated with the large volume of water being carried into the western basin via the Detroit River. Nevertheless the Detroit River serves as a primary contaminant and nutrient loading source to Lake Erie (Figure 1b).
- 2. The shoreline region along the U.S. portion of the basin exhibits concentrations of nutrients, suspended solids and chlorophyll as large as ten times the open water values.
- 3. There is a general improvement in water quality as one moves from the western shoreline into the central basin.

The objective of this project was to determine a station pattern which will generate a data base representative of the western basin open water conditions. Current information together with the historical data base could then be used to develop long term basin trends. Due to the high spatial and temporal variability characteristic of the basin, both frequency and number of sampling locations needs to be proportionally greater than what has been determined for the central and eastern basins.

STUDY PLAN

B

1

The STORET western basin data base was acquired from the USEPA Large Lakes Research Station at Grosse Ile. The study plan followed the flow chart in Figure 2. The geographical distribution of the data was determined by plotting the station locations on a standard Western Basin chart. Next, inventories of the limnological variables were made and continuity of the data was determined seasonally and annually. This review of the data base was necessary in order to select variables which would be most appropriate for inclusion in the multiple variable cluster analysis. The protocol followed for the cluster analysis was the procedure developed by El-Shaarawi (1984).

Finally, a station pattern was determined for future surveillance programs that would provide the appropriate data base from the open lake representative clustered area. In addition, seasonal variablity was determined in an attempt to ascertain the number of surveys that would be required for future sampling programs.

RESULTS AND DISCUSSION

DATA BASE INVENTORY

- 35

This study followed a systematic progression designed to evaluate the western basin data retrieved from STORET. Descriptive statistical information was assembled for over 150 variables contained within the data set (Table 1). The file contained a total of 496 stations distributed throughout the western basin. Station codes which included location information (latitude and longitude) were used to plot station positions on a U.S. Great Lakes "West End of Lake Erie" chart (14830). Results indicated that the largest percentage of stations were located in the region extending from the mouth of the Detroit River along the western shoreline to Toledo, Ohio. The fewest number of sampling records were found along the southern third of the basin, along the Ohio shore.

Of the 150 variables recorded in the western basin data set, only 21 were examined in detail. The 21 variables were selected based upon completeness of the data over the period of record from 1947-1984, the total number of values recorded on a yearly basis and the appropriateness for defining an offshore representative region. None of the metals, organics, or sediment contaminant data bases were considered adequate for this task, consequently the variables selected were a combination of conservative and non-conservative (biologically active) conventional chemical measurements.

The western basin data recorded from 1947 through 1984 indicated that the majority of the information was collected during the 1960's and 1970's (Tables 2-23). Only temperature had a continuous data base through the period of record; containing the largest number of data points (N = 10,101). Generally, individual stations did not have continuous data over the period of record (1947 - 1984) and data was frequently limited to 1 to 5 year time periods.

One specific western basin study had a significant impact on the overall data set. During 1978 and 1979 an intensive nearshore study was undertaken; having an intense station pattern concentrated within 10 km of shore. This study accounted for up to 600 data points annually for the two year period. Lack of a comparably intense data base for the open waters of the basin decreased the usefullness of this data set in defining an offshore region.

The entire data set was examined for possible seasonal influences. In order to obtain a general understanding of the seasonality, individual variables were inventoried based on a four season partitioning format:

SEASON 1	JANUARY -	MARCH
SEASON 2	APRIL -	MAY
SEASON 3	JUNE -	SEPTEMBER
SEASON 4	OCTOBER -	DECEMBER

It was evident that the largest proportion of the data was collected during SEASONS 2 and 3 and the fewest values were recorded during SEASON 1 (Tables 2-23). For example, less than 3% of the temperature data was collected during SEASON 1 while over 80% was collected during SEASONS 2 and 3.

In addition, Tables 2-23 contain yearly data summaries developed for each of the 21 variables examined. Since the seasonal component influences nearly all the variables, monthly data was summarized for the period of record to help elucidate how the various seasons effected data variability. The data is presented in a modified notch block format, showing the range of values, mean, median, 25th percentile, 75th percentile and the number of samples (N). An example of this plotting format is presented in Figure 3 and the monthly statistics for the major variables are presented in Figures 4-24. The following text contains a brief description of each variable inventoried. Those variables labeled with an (*) were considered for inclusion in the multi-variable cluster analysis to define the representative open water region.

TEMPERATURE. This is the most complete data base found in the entire data set, containing a continuous record from 1947 through 1984 (Table 2). Due to the year to year seasonal differences in the sampling schedule, differences in the yearly means are not considered significant. The monthly pattern reflects the annual heating and cooling cycle indicative of the basin (Rathke, 1984) as shown in Figure 4. Temperature was considered to be an inappropriate variable for defining a specific open lake sampling region due to the lack of any significant spatial differences in seasonal temperature regimes.

CONDUCTIVITY*. The conductivity data base was very extensive; having a total of 5897 values with data available for all but three years since 1947 (Table 3). This data set showed only small seasonal variation (Figure 5). Since this variable is very useful in identifing water masses, it was examined in detail to aid in identifing specific water quality areas within the basin. For example, water entering the western basin from the Detroit River had the lowest conductivity found in the lake. Conductivity values in the river mouth region remain near 240 umhos/cm due to the lower concentration of principal ions found in the upper Great Lakes. In contrast, the conductivity values recorded for the River Raisin and the Maumee River are in the range of 300 umhos/cm. Thus, this variable could serve as a good tracer for tributary water masses as they mix with the water entering from the upper lakes.

CHLORIDE*. As with conductivity, the chloride data base was very extensive; having a total of 3592 values over the period of record. With the exception of 1965, 1980 and 1982 all other years were represented (Table 4). Even though chloride is considered a conservative variable, it does undergo somewhat of a seasonal cycle in the western basin (Figure 6). Peak concentrations coincide with late winter and early spring when major tributary and land runoff is taking place. SULFATE. The sulfate data base was found to be inconsistent in yearly distribution of values, having 1291 values listed for the period of record (Table 5). Nearly 50% of the data was collected during the 1978 intensive year on Lake Erie and the majority of these samples were collected in the nearshore zone. Seasonally, the sulfate concentrations were somewhat erratic with no apparent trend (Figure 7). Sample locations are extremely critical for this data base due to the numerous point source contributors within the basin (ie. fossil fuel power plants). Due to the inconsistent nature of this data base it was not used in the final cluster analysis.

DISSOLVED OXYGEN. Oxygen concentrations were examined only as a point of interest. Since the basin does not develop permanent thermal stratification, the oxygen concentrations are nearly always close to 100% saturated. The mean and median yearly concentrations consistently range from 8 to 10 mg/l (Table 6). It should be noted that yearly minimum values frequently are below 5.0 mg/l with some values reaching less than 3.0 mg/l. These values are recorded during short periods of ephemeral stratification, allowing oxygen depletion in the bottom waters. The monthly composite data (Figure 8) indicates that this most commonly occurs from June through September as documented by Bartish (1984).

PERCENT DISSOLVED OXYGEN SATURATION. The information contained in this data set reflects the dissolved oxygen situation for the basin. Mean and median saturations are always over 90% and frequently have maximum values greater than 120% due to photosynthetic oxygen production (Table 7). Minimum concentrations also reflect the effects of oxygen depletion which occur during short term stratified periods (Figure 9).

pH. This variable was examined primarily for general interest purposes. The data set extensively covers the period of record. Mean-median values from 1947 - 1984 ranged from 8.1 to 8.6 with the values extending from 6.0 to 10.0 (Table 8). In addition, the cummulative monthly summary indicated no significant seasonal effect. Due to the substantial carbonate buffering capacity of Lake Erie, no significant trend seasonally or spatially would be expected (Figure 10).

TURBIDITY*. The STORET data base for turbidity was listed as two seperate variables, turbidity in Jackson Turbidity Units (JTU's) and turbidity as Nephlometric Turbidity Units (NTU's). The JTU data set spanned 1967 - 1973 while the NTU data extended from 1973 - 1984 (Tables 9 and 10). It is recognized that there is a difference in the results obtained from the two techniques however, it was felt that the advantages gained from combining the two data sets outweigh the disadvantages. The yearly means and medians were similar for the two data sets with the exception of 1978 and 1979 when turbidity increased significantly. As previously discussed the 1978-1979 data were primarily obtained from the nearshore zone as part of the Lake Erie intensive program. Values were found to be greater than in previous years due to the location of the sampling sites. In general, turbidity followed an expected seasonal pattern, with the highest values occurring in the spring and fall (Figure 11). This is largely due to resuspension of unconsolidated sediments during periods of high wind.

SECCHI. Secchi data is fairly extensive with little change evident over time or through the season (Table 11 and Figure 12). Due to the shallow nature of the western basin, storm activity readily mixes the unconsolidated sediments into the overlying waters, thus Secchi readings are generally low. An inverse relationship is apparent with turbidity and total suspended solids.

1

TOTAL SUSPENDED SOLIDS (TSS)*. The TSS data set contained 1229 values with adequate data distribution over the period of record (Table 12). TSS provides quantitative information on the particulate material suspended in the water In a tributary dominated shallow water body such as the western basin, column. the particulate material found in the water column originates from a combination of autochthonous and allochthonous sources. This suspended material is a combination of organic (planktonic and detrital) and inorganic material. The percent or ratio of the organic to inorganic constituents depends upon several factors ie. season, sampling location and meteorological conditions. Figure 13 illustrates the seasonal changes in suspended material concentrations. Ideally, this variable is best used when accompanied with volatile and residual solids information, which is frequently obtained as part of the TSS analytical procedure. Unfortunately, the STORET files contained less than 200 data points for either of these additional variables. TSS concentrations by themselves can be helpful in defining spatial differences within the basin primarily because the smaller tributaries are heavily laden with particulate material while the dominant Detroit River generally contains lower concentrations.

TOTAL PHOSPHORUS*. Total phosphorus is one of the principal variables used to assess eutrophication in freshwater systems and in Lake Erie phosphorus has been a target of remedial action plans. The phosphorus data base is relatively extensive; having a consistent record since the late 1960's. In addition, well over 100 values have been recorded annually from 1967 - 1982 providing 5680 data points over the 18 year period (Table 13). Significant reductions in total phosphorus have been documented for the central basin (Rosa 1986) however, a similar analysis for the western basin has yet to be undertaken. From the information presented in Table 13, the values seem to have decreased over the As indicated by Figure 14, the seasonal pattern for total period of record. phosphorus is complicated biological, physical by and meteorological ' interactions.

TOTAL DISSOLVED PHOSPHORUS*. Of the many phosphorus fractions that can be measured using conventional methods, total dissolved phosphorus represents the largest most readily available form. This phosphorus pool is comprised of orthophosphorus plus the dissolved organic fraction which is a mixture of organic extracellular and intercellular compounds having a broad range of molecular weights. The data base is made up of 4768 values spanning 1967 through 1979 and continuing again from 1981 to 1984 (Table 14). Seasonally, total dissolved phosphorus reflects a pattern similar to the seasonal fluctations in total phosphorus concentrations (Figure 15).

DISSOLVED PHOSPHORUS (ORTHO)*. The orthophosphorus data base is not as extensive as for total phosphorus or total dissolved phosphorus. However, a continuous record from 1968 through 1984 containing 2743 values was examined (Table 15). As is evident from Table 15, open lake western basin concentrations generally are below 10 ug/l, consequently the data recorded prior to 1971 is questionable. Since orthophosphorus is the most readily assimilated phosphorus form, seasonally it shows an inverse relationship with phytoplankton biomass. This is indicated by comparing the seasonal orthophosphorus changes (Figure 16) with seasonal changes of chlorophyll (Figure 22).

NITRATE + NITRITE. Suprisingly, the nitrate + nitrite data base was not as complete as would be expected. Significant gaps exist in the data during the 1960's and 1970's (Table 16). This is an unfortunate circumstance since this variable would be very useful in defining an offshore region within the basin as well as examining long term trends. Even with the relatively sparce data base (n = 1906), a very distinct seasonal pattern was evident (Figure 17); with peak concentrations occurring during the spring followed by decreasing concentrations through the summer and into the fall.

AMMONIA. The ammonia data set contains 1248 values spanning from 1968 through 1982. As with most of the variables, the 1978-1979 intensive years dominate the data, contributing nearly half of the values to the total data set (Table 17). Ammonia concentrations peak during spring runoff and decrease through the summer months (Figure 18). Due to the restricted nature of the data base and the analytical problems associated with measuring ammonia concentrations below 20 ug/l, it was not considered a primary source of information on the western basin.

TOTAL INORGANIC NITROGEN. This data base was examined for general interest purposes. Total inorganic nitrogen should consist of the sum product of nitrate, nitrite and ammonia values. Dissolved nitrogen is not generally measured. It is evident from a comparison of Tables 16, 17 and 18, that the data base is not complete. Two reasons for the discrepancies are speculated; not all forms of inorganic nitrogen were measured at all sites thus the summation was not possible and second, the forms were not summed thus the total inorganic nitrogen data was not entered into STORET. Whichever the case, this data base was not examined beyond this inventory. As would be expected, the seasonal cycle was similar to ammonia and nitrate + nitrite (Figure 19).

KJELDAHL NITROGEN. The organic nitrogen data base was considerably greater than originally anticipated; having a total of 3558 values and spanning nearly the entire period of record (Table 19). Seasonally, the values responded to spring peak loadings and depletion by summer pulses of phytoplankton (Figure 20). This data base was not used in defining the offshore region.

DISSOLVED SILICA. The silica data base was somewhat sporadic in its annual distribution; dominated by the 1978 and 1979 field seasons (Table 20). Of the 2805 values recorded, most of the data occurred during the summer months. Silica concentrations peak during the spring runoff period and decrease through the year (Figure 21). The early spring concentrations are associated with tributary inputs while the late spring and summer decreases in concentrations are attributed to diatom utilization.

CHLOROPHYLL a* (CORRECTED and UNCORRRECTED). Chlorophyll a values were accessed under two files, one for uncorrected and one for corrected chlorophyll. Other than the somewhat lower values recorded for the corrected data (which is to be expected), the two files were very similar. The uncorrected file contained data for 1968 through 1982 while the period of record for corrected values was from 1972 through 1982 (Tables 21 and 22). The seasonal cycle indicated the unimodal curve characteristic of the basin (Fay 1976) (Figures 22 and 23). For basin definition via cluster analysis, the uncorrected data base was utilized.

1

PHEOPHYTIN. The data base for pheophytin concentrations was examined for general interest and for comparison with the chlorophyll files. The period of record for the data base was limited to 1974 to 1982; containing 2053 records (Table 23). The seasonality was similar to that shown for chlorophyll with highest concentrations occurring during peak chlorophyll episodes (Figure 24).

DATA QUALITY. The data presented in Tables 2-23 and Figures 4-24 provide information for a reasonable range of values one would expect to find in the open lake region. On occasion an unacceptable value was encountered, for example, a temperature of 311°C recorded during 1964. Only if such a value was encountered in a variable used for the cluster analysis was it removed from the working data base. Generally, unacceptable values accounted for less than 1% of the data set and were considered to be date entry errors.

MEANS VERSUS MEDIANS. One of the findings from the statistical analysis of the western basin STORET file was that medians provide a more descriptive characterization for some variables than is provided by statistical means. This is demonstrated by the means and medians presented below:

VARIABLE	N	MEAN	MEDIAN	% DIFF (MED - X)
TEMPERATURE	10101	17.9	19.6	+ 9.50
CONDUCTIVITY	5897	277.4	266.4	- 3.60
CHLORIDE	3592	18.4	18.0	- 2.17
SULFATE	1291	25.3	22.8	- 9.88
SECCHI	1385	1.1	0.9	- 0.18
DISSOLVED OXYGEN	7892	9.6	9.4	- 2.08
DISSOLVED OXYGEN (%)	5088	97.3	97.0	- 0.31
pH	6400	8.4	8.4	0.00
TURBIDITY (JTU)	2721	8.8	4.5	-48.86
TURBIDITY (NTU)	2605	14.1	8.1	-42.55
TOTAL SUSPENDED SOLIDS	1229	20.3	13.0	-35.96
TOTAL PHOSPHORUS	5680	65.8	46.3	-29.64
TOTAL DISSOLVED PHOSPHORUS	4768	25.8	14.6	-43.41
DISSOLVED PHOSPHORUS-ORTHO	2743	7.7	3.3	-57.14
NITRATE + NITRITE	1906	1496.2	230.0	-84.63
TOTAL INORGANIC NITROGEN	2589	355.0	226.0	-36.34
KJELDAHL NITROGEN	3558	731.9	390.0	-46.71
DISSOLVED SILICA	2805	40.9	0.7	-98.29
CHLOROPHYLL (UNCORRECTED)	2257	22.4	16.5	-26.34
CHLOROPHYLL (CORRECTED)	2246	20.3	14.8	-27.09
PHEOPHYTIN	2053	4.0	2.9	-27.50

COMPARISON OF WESTERN BASIN MEANS TO MEDIANS DERIVED FROM THE STORET DATA BASE (1947 - 1984). For many variables the difference between the mean and the median was not appreciable. However for those variables which contained values that were much higher or lower than the median (up to 20% of the entire data base), the mean and the median were frequently found to be very different (ie. Turbidity, Total Suspended Solids, Total Phosphorus, Orthophosphorus, Nitrate + Nitrite and Dissolved Silica).

CLUSTER ANALYSIS

1

In order to define a representative western basin open water region that would provide information for basin characterization and trend analysis, a cluster analysis procedure was utilized. The method employed by El-Shaarawi (1984) to define an offshore sampling area in the central and eastern basins was used as a model for the western basin study. Thus, careful attention was given to the various clustering methodologies and the criterion for determining the appropriate number of clusters used by El-Shaarawi. There are many different existing clustering techniques and over 200 algorithms which can be divided into four major categories;

- 1. Ordination Techniques
- 2. Hierarchical Methods
- 3. Partitioning (Non-hierarchical)
- 4. Clumping or Clique

Milligan (1978) presents an excellent overview of these four algorithm types and the advantages and disadvantages of each.

Clustering is a means of grouping variables according to their magnitude and interrelationship with no assumptions made regarding the number of groups or the group structure. Grouping is done on the basis of similarities or distances, where a large distance corresponds to a dissimilar relationship or in this case a dissimilar concentration. Initially, there are as many clusters as there are data points. Concentrations which are most similar are first grouped and then these initial groups are merged according to their similarities.

El-Shaarawi (1984) utilized a non-hierarchical nearest centroid clustering method which included automatic seed selection, criteria for the elimination of clusters with too few members, splitting of elongated clusters and clumping of clusters which are too close together. In dealing with central and eastern basin data sets, El-Shaarawi clustered on a survey by survey basis, thereby avoiding any temporal complications. In addition, El-Shaarawi utilized only surface data, thus eliminating problems associated with a single station being placed in two or more clusters as a result of concentration differences at various depths.

The clustering program utilized for the western basin analysis was titled FASTCLUS and was accessed through SAS (Ray, 1982). FASTLCLUS was designed for disjoint (non-overlap) clustering of very large data sets (100 - 100,000 observations). The FASTCLUS clustering procedure is based upon Euclidean or straight-line distances computed from one or more quantitative variables and is an iterative process that can find satisfactory clusters with only two or three passes through the data.

This procedure has two objectives;

- 1. To place each observation in a cluster with similar observations.
- 2. To minimize the sum of the squared distances between individual values and the cluster means.

FASTCLUS is based on a method that Anderberg (1973) refers to as nearest centroid sorting. Initial cluster seeds (i.e. individual observations) are selected as a first estimation of the cluster means. Each observation in the data set is then assigned to the nearest seed (concentration), thereby establishing temporary clusters. This process is repeated until there are no longer any changes in the cluster selection. FASTCLUS is very sensitive to outliers and can be an effective method for detecting outliers since they will appear as clusters with only one member.

Cluster information from this study is presented in tabular format as well as plotted in graphical form. The X - Y coordinates represent latitude and longitude thereby providing a western basin map of the resulting information. The spatial zones determined by cluster analysis were defined by El-Shaarawi (1984) as regions of the lake, although not necessarily continuous, which exhibit concentrations that can be considered to come from the same probabilty distribution.

SINGLE VARIABLE CLUSTERS

Selection of the variables employed in cluster analysis has a great deal of influence on the resulting clusters. To demonstrate this, imagine the final cluster for a deck of cards if color was the variable of choice (Figure 25 a). For bridge players, the most significant clusters would be formed by selecting the cluster variables of "Honors Versus Trash" or tens, jacks, queens, kings and aces versus the face value cards (Figure 25 b). For the game Hearts, two clusters would also be produced. The resulting clusters are non-continuous due to the placement of the queen of Spades with all the Hearts (Figure 25 c). Four clusters result when suit is the variable of choice (Figure 25 d) and if selection is made by face card value then 13 clusters will result (Figure 25 e). Finally, if a combination of color and face card value are used then 26 clusters will result (Figure 25 f) (Anderberg, 1973). As expected, the importance of variable selection is clear in the previous playing card example, however it is much more obscure for limnological variables.

Before attempting to define an open lake sampling region based upon multi-variable cluster analysis, it was necessary to analyze each of the individual variables using the single variable cluster routine. This first step was designed to aid in selecting the appropriate number of clusters; to define a region representative of the open waters; determine if extreme values should be eliminated; determine if seasonal data distribution influences the distribution of clusters, and finally determine which variables should be used to best characterize the open water region.

The initial step taken to develop a single variable clustering protocol was to experiment with a series of test clusters. The clustering was initiated for the western basin data utilizing two conservative variables, conductivity and chloride. These variables were appropriate for the initial testing due to:

- 1. The completeness of the data over the period of record.
- 2. The broad geographical distribution of the data.

M

- 3. The large number of data points; chloride (n = 3592) and conductivity (n = 5897).
- 4. The broad range of values found in each data set; chloride (3.2 290 mg/l) and conductivity (34.0 1100 umhos/cm).

(3.2 - 290 mg/r) and conductivity (34.0 - 1100 mmos/cm).

Each of these data bases was accessed initially without removing any outlying values. The first step was the production of a 20 cluster series for each variable. This sequence consisted of clustering the data base nineteen different times. Each clustering exercise varied in the number of clusters processed. For example, the original data base first produced two clusters, then three clusters and so on up to twenty.

The first test series to determine the optimum number of clusters necessary to represent the open water region was made using the variable chloride. The maximum within-cluster Euclidean distance (d) of the most populated cluster (containing the most data points) in each of the 2 to 20 cluster routines was plotted (Table 24 and Figure 26). From this data, the optimum number of clusters appears to be 6 (Figure 26). By design, the test provided information primarily on the largest cluster (greatest N). For example, when the cluster size was selected to be 2, the largest cluster contained 3166 members out of a possible 3592 data points. The mean concentration was 17.0 mg/l having a maximum between-cluster distance of 14.2. When 6 clusters were selected, the largest cluster had 1690 members with a mean chloride concentration of 15.1 mg/l and a maximum distance of 3.7. Increasing the cluster limit to 7 had a small impact on the the largest cluster concentration (increasing from 15.1 to 18.8 mg/1) but more importantly it had no impact on the maximum distance within the largest cluster (d = 3.7). In other words, after the sixth cluster there was no reduction in distance associated with the addition of another cluster or no improvement in the reliability of the cluster.

Next, a series of clusters ranging from 5 through 12 were developed (Tables 25 - 32, respectively). Since FASTCLUS contains no format criterion for the elimination of clusters with too few members, some clusters were obtained with disproportionately small memberships. For example, in the five cluster series, cluster Number 1 contained only seven members (Table 25). From the concentration range of the cluster it is apparent that these 7 members were outliers representing 0.2 % of the data set (N= 3496). In the 12 clusters series (Table 32), 4 of the 12 clusters had a limited membership (n < 12).

A similar test procedure was undertaken with conductivity. The optimum number of clusters utilizing the conductivity data appeared to be five (Figure 27). It should be noted that the difference in maximum within-cluster distance was greater for conductivity than chloride. This was attributed to a greater conductivity concentration range (100 - 600 umhos/cm) compared with chloride (3 - 76 mg/l). As with the chloride cluster series, the maximum Euclidean distance within the largest cluster was plotted for the 2 to 20 cluster series (Figure 27, Table 33). The breakpoint in the maximum distance curve assumes a different shape when compared with chloride (Figure 26). The maximum distance when two clusters were designated was 151.5, having a mean of 268 umhos/cm. When five clusters were selected the mean decreased to 263.6 umhos/cm and the maximum distance dropped to 56.4. The reduction in maximum distance continues until the 12 cluster series. At this point the maximum distance stablizes and the addition of more clusters does not decrease the distance significantly. When conductivity and chloride were compared for equivalent within-cluster distances, conductivity required 15 clusters (d = 14.1, Table 33) while chloride required only a two cluster series (d = 14.2, Table 24). Thus, determination of the appropriate cluster size was a compromise between minimizing Euclidean distance and meeting the study objectives.

6

 $\widehat{}$

Further analysis of individual variables was used to determine the appropriate number of clusters for the multi-variable cluster step. Figure 28 shows the breakpoint for the determination of the appropriate number of clusters using the ratio of the between-cluster to within-cluster variance (RSQ/(1-RSQ)) for western basin conductivity. Six clusters appear to agree with the breakpoint determined using the maximum distance within the most populated cluster analysis (Figures 26 and 27). El-Shaarawi (personnel communication) recommended the within - between ratio as the best method for determining optimum cluster number. Ideally, the within-cluster variance will be small indicating internal cohesion and the between-cluster variance will be high indicating external isolation (Milligan, 1978), resulting in a RSQ/(1-RSQ) value or variance ratio approaching zero. The cubic clustering criterion should also be at a minimum to accurately determine the appropriate number of clusters In Table 47 and Figure 29 the minimum cubic clustering criterion (Sarle,1983). which optimizes the number of clusters in which the variance ratio is lowest occurs at six clusters. Keep in mind that the number of clusters specified also needs to accommodate the goals and objectives of the study.

The second phase of single variable clustering involved reviewing the data base using a reasonable concentration range for the western basin as presented in the following table. This exercise was designed to eliminate the extreme outliers, both high and low. Each data base was examined for outliers and an acceptable concentration range was chosen based upon the mean, median, standard error and frequency histogram. In general, ranges that were established eliminated 1% or less of the values found within a data base. The ranges are as follows:

VARIABLE	ACTUAL RANGE	ACCEPTABLE RANGE
CONDUCTIVITY (umhos/cm) CHLORIDE (mg/1) TURBIDITY (JTU) TURBIDITY (NTU) TOTAL SUSPENDED SOLIDS (mg/1) TOTAL PHOSPHORUS (ug/1) TOTAL DISSOLVED PHOSPHORUS (ug/1) NITRATE + NITRITE (ug/1) CHLOROPHYLL a (TOTAL) (ug/1) CHLOROPHYLL a (CORRECTED)(ug/1)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

130

1

The next step was to examine the affect that seasonality had on the concentration range. Since the data collection is largely dependent on meteorological conditions, the winter period (January - March) generally contained the smallest data base. The five cluster series for both chloride and conductivity were examined for seasonal affects (Tables 34 and 35). Two tables present the data for each of the five clusters for the entire year and are subdivided into seasonal units for each individual cluster. Table 35 provides the clearest example using the conductivity data base. Cluster three contains the most members (N = 4526) and was considered to be most representative of the Cluster three had a mean value of 257 umhos/cm and was well open water. represented in all seasons with the exception of SEASON 1 (WINTER). More importantly, nearly all the data collected during the winter months is from nearshore and water intake locations. Since the study objective is to establish an open lake sampling strategy, the winter data was considered inappropriate. Therefore to avoid any spatial biases, the winter data was not included for any variable in the analysis.

Finally, single variable clustering was used to discern which variables are the most sensitive and thus should be included in the multi-variable cluster approach. Single variable clusters were examined for all the data bases having sufficient information. After interpreting the individual clusters, those variables found to be most sensitive geographically were selected for inclusion in the multi-variable analysis. Graphic interpretations have been included to illustrate the term "sensitivity" (Figures 30 and 31). For example, a variable such as chloride which exhibits a large concentration range and results in a strong geographically definable concentration gradient is considered to be sensitive (Figure 30). Consequently, the distribution of the most dominant cluster / concentration was limited geographically. In contrast, the most dominant conductivity cluster was so expansive in distribution that it incorporated nearly the entire western basin and was therefore considered to be "insensitive" (Figure 31).

Single variable cluster means (Tables 37 - 44) had a calculated R-squared greater than 0.97 for most of the major variables, indicating good internal of The five variables selected for multi-variable analysis were cohesion. chacterized by a low variance ratio (RSQ/(1-RSQ). The low variance ratio indicates the formation of good clusters as a result of high internal cohesion (low within-cluster distance) and high external isolation (large between-cluster Based upon the single variable cluster performance and the distances). significance of the individual and combined variables, the limnological following five variables were included in the multi-variable cluster analysis:

VARIABLE	VARIANCE RATIO
Turbidity	16.89
Total Phosphorus	14.83
Total Dissolved Phosphorus	15.06
Chloride	8.94
Chlorophyll (Uncorrected)	17.94

Conductivity was found to have a low sensitivity for detecting geographical concentration differences and therefore was not used in the multi-variable cluster analysis. Nitrate + Nitrite data was not used because of a very high variance ratio (76.38) indicating poor cluster formation.

MULTI-VARIABLE CLUSTERING

1

1

Before FASTCLUS could be applied to the multi-variable analysis. standardization of the data was necessary. In cases where all variables are expressed in the same unit structure and are within an order of magnitude of each other, standardization is probably not necessary. However in this case, where the difference between concentrations is utilized as the criterion for clusters (cluster distances), it was necessary to apply a establishing standardization procedure. The standardization was accomplished by subtracting the specific variable mean concentration from each individual observation and dividing by the standard deviation of the variable mean. For interpretation actual cluster means were re-calculated (re-standardized) purposes, the following the clustering phase. The results from the first attempt at multiple variable clustering produced a non-continuous open lake sampling region (Figure 32). El-Shaarawi (personnel communication) professes that this type of zonation results from negatively skewed data.

Prior to initiating the second generation multi-variable cluster, experiments were conducted to verify if the standardized data was skewed. Once established, a log transformation and a log-log transformation were performed to test if either procedure would eliminate the skewness. Results indicated that the log-transformation was superior to the log-log transformation because of the similarity between the mean and median, thus showing that the skewness had been eliminated. The log-log transformation appeared to reduce the variablity in the data to an extreme so that differences were not easily detectable. A comparison of single variable clusters resulting from non-transformed and transformed data

COMPARISON OF MEANS AND MEDIANS	OF LOG AN	ND LOG-LOG	TRANSFO	RMED DATA
	l	_0G	L0	G-LOG
VARIABLE	MEAN	MEDIAN	MEAN	MEDIAN
Turbidity	1.86	1.79	0.45	0.58
Total Dissolved Phosphorus	10.80	10.82	1.33	1.36
Total Phosphorus	9.61	9.48	0.92	0.94
Chloride	2.87	2.88	1.04	1.06 ′
Chlorophyll (Uncorrected)	2.85	2.97	0.97	1.09

In comparing cluster variance for standardized non-transformed multi-variable data (Table 46) and standardized log transformed multi-variable data (Table 47), the estimated R2 values were identical, however, the cubic clustering criterion and variance ratios were found to differ slightly. The variance ratios were somewhat higher for the log transformed data in all cases except one. The cubic clustering criterion values were similar for the two methods but were generally higher for the log transformed data. Both criteria indicate that cluster formation is slightly better with non-transformed data. However, transformation is necessary to avoid skewness and non-continuous clusters.

RESULTS FROM THE MULTI-VARIABLE CLUSTER ROUTINE

 \sim

3

As determined from experiments with single variable clusters, a minimum of six clusters was found to be necessary to characterize the western basin and define the open water sampling region. In order to determine which of the clusters derived from the multi-variable cluster routine best represented the open waters, a comparison of individual cluster means for each variable was made with the mean and median derived from the entire western basin data set. As shown in Table 48, cluster 7 was the most representative of the individual variable median concentrations calculated for the western basin. Other clusters indicated similar concentrations for one or more variables, but only cluster 7 was uniformly representative of the open lake western basin region for all variables. In the case of turbidity and chlorophyll, only cluster 7 was close to characterizing the open lake conditions. Western basin open lake conditions (Figures 33 - 38).

Once the open lake region was defined, a more detailed examination of the actual data distribution within the region was undertaken. To accomplish this a grid system was constructed for the area between longitude 82°32" and 83°26" and latitude 41°38" to 42°00" with each grid being two minutes (") square (Figure 39). It was found that of the 297 defined grids only 132 grids contained data. Next, a median was calculated for each grid using standardized, log transformed and log-log transformed data. Calculations were made using the data for spring, summer, fall and the combination of all three seasons. A multi-variable cluster

analysis was performed using the mean values for each grid within the region.

SAMPLING STRATEGY FOR FUTURE DATA COLLECTIONS

 \sim

1

The geographic boundary for the western basin sampling region was made by mapping the multi-variable cluster (Cluster 7) derived from the previously selected variables. The initial area established by the clustering of standardized data, yielded a geographically non-continuous region (Figure 32). The second generation multiple-variable cluster analysis using log transformed data resulted in a larger, continuous, sampling region (Figure 40).

In order to determine the number of stations needed to sample the open the western basin, the grid clustering strategy (previously waters of disscussed) was utilized. The variance of the grid clusters incorporating spring, summer and fall was compared to the variance of the sampling region obtained from the second generation multi-variable cluster. To determine the number of grids necessary to maintain a similar standard deviation or variance for the two methods, the Euclidean distance technique was utilized. The arid data was standardized to make it unit free so that the Euclidean distances could The cut-off points between grid segments were be correctly calculated. (Table 49). subjectively chosen The Euclidean distances plotted in 5 dimensional space produced five grid segments. This was translated into five geographic segments for the sampling region. Each segment would than be represented by a station, resulting in five stations to characterize the open water western basin region.

Station location within the segments was selected based on two criteria; 1) to cover the geographical expanse of the region; and 2) to select stations, if possible that could meet the first criterion and provide a historical data base for trend purposes (Figure 41). Three stations in the STORET data file were within the defined region and had data bases extending back to 1973. Two new station locations were selected to cover the geographical expanse of the area (91 and 92).

Due to a lack of information in the south-eastern portion of the basin, a sixth station was added outside the defined sampling region. It is intended that information from this location will enhance future attempts to examine this basin as well as provide a reference for comparison with the cluster stations. The six station locations are as follows:

STATION NUMBER	LATITUDE (N)	LONGITUDE (W)
58	41 41.1	82 56.0 REFERENCE SITE
59	41 43.6	83 09.0
60	41 53.5	83 11.8
61	41 56.8	83 02.7
91	41 50.4	82 55.0
92	41 57.0	82 41.2

The number of surveys to be conducted during future western basin surveillance programs was determined based upon the variability calculated for each season (spring, summer and fall). By taking the square root of the sum of the coefficient of variation (Standard Deviation (Mean) for each parameter

the coefficient of variation (Standard Deviation / Mean) for each parameter utilized in the multi-variable cluster analysis, an estimate for seasonal variability was calculated. This estimate was then used to determine the number of surveys necessary to annually characterize the western basin and to track long term trends.

	/		2	2		2		2	2
SEASONAL = VARIABLITY		SD TURE	+	SD TP	+	SD TDP	+	SD CL +	SD CHL
		X TURE		Χ ΤΡ		X TDP		X CL	X CHL

1

From this calculation procedure it was determined that the summer period was the most stable, having a coefficient of variation (CF) equaling 1.757, with the fall period indicating only a slightly greater value (CF = 1.855). The greatest variability occurred during the spring season, with a CF = 2.82. By comparing these three variances, one can determine the number of surveys that should be sampled during each of the seasons to provide accurate annual concentration estimates for the offshore waters of the basin.

SUMMER : FALL : SPRING 1.75 > 1.85 > 2.82

For example, by using the summer variance as the reference point, the appropriate number of surveys necessary for each season can be determined. This procedure indicates that a greater number of surveys need to be conducted during the spring (April-May) when variability is the greatest. For example, if the surveillance program calls for two summer survey then 3.2 spring surveys should be conducted and a minimum of seven surveys need to be conducted annually.

	SUMMER	FALL	SPRING	TOTAL
NO OF SURVEYS	2.0	2.12	3.2	7
	3.0	3.18	4.8	11
	4.0	4.24	6.4	14

RECOMMENDATIONS

1. Based upon this review of the western basin data base and the analysis of the seasonal variability, it is recommended that a minimum of seven western basin surveys be conducted annually (3 spring, 2 summer and 2 fall). In addition, it is recommended that a minimum of two weeks between surveys be maintained during periods of high variability (ie, spring).

2. After a three year data base has been established using the proposed station pattern and sampling frequency, it is recommended that the new data base be evaluated in a manner similar to this study.

1

1

3. The existence of the STORET data base was useful for this study but the inventory demonstrated that there are definite problems with the reliablity of many of the data points. A clean-up of the existing data base for the priority parameters is called for.

.

3

)

•

٢

٢

.

•

Table 1. Summary of STORET Western Basin Data Inventory 1947-1984

.

)

)

)

.

)

)

VARIABLE	LANEL	N	MEAN	STANDAHD Deviation	VALUE VALUE	NAXINUN Value	RANGE	SUN	VARIANCE
A 1	DEFTH	11253	20.24	70.60	0.00	832.00	832.00	227750.25	4984
¥2	246-18-60	19	749900.00	0.00	749900.00	749900.00	0.00	14248100.00	4704
A 3	WATER-TEHP	10101	17.86	8.40	0.00	311.00	311.00	180414.60	า้
A4	AID-TERP	6126	19.12	6.35	0.00	35.00	35.00	117127.39	40
۸5	WEIGHT	247	1.88	2.00	0.16	16.00	15.84	464.97	4
A 6	LENGTH	261	15.00	4.42	7.30	28.90	21.60	3916.06	20
٨7	BARON-PRESS	2194	763.16	25.76	90.02	775.00	684.98	1674371.40	664
κ۹	F1ELD-1D-NO	250	148.61	309.75	0.00	801.00	801.00	37152.00	95944
۸9	INCUT-LT-HENN	89	24.60	17.58	2.00	65.00	63.00	2189.00	309
A10	CLOUD-COV	1101	48.42	35.26	0.00	100.00	100.00	53310.00	1243
λ11	WIND-VELOC	6567	11.57	5.93	0.00	39.13	39.13	75976.95	35
A12	W1WD-D1K-N	5233	164.15	93.53	0.00	360.00	360.00	963634.00	6748
A13	WIND-D-AZINU	1280	198.93	94.66	0.00	360.00	360.00	254628.00	
A14	TURB-JKSN	2721	6.70	15.44	0.40	230.00	229.60		8960
A15	SAMP-LOC-VERT	206	168.21	146.33	50.00	500.00	450.00	23684.15	238
A16	TUHB-THANS	75	0.93	1.36	0.10	9.10	9.00	34651.00	21413
A17	TULB-HLGE	199	8.03	8.10	0.00	50.00		69.50	2
A 1 8	TURB-TRBIDNT-HACH-FT	2605	14.09	19.49	0.80	280.00	50.00 279.20	1598.30	66
A19	THANSP-SECCHI-INCH	69	33.04	13.91	12.00			36697.26	380
A 2 U	1HANSP-SEECCUI-BETER	1385	1.15	1.29	0.10	66.00	54.00	2280.00	193
A 2 1	COLOR-FORL-ULE	119	15.29	3.80	9.00	14.80	14.70	1568.73	2
A 2 2	ODUR-THESN-NO	16	1.94	1.12		22.00	13.00	1819.00	14
A23	REDDX-DRP-NV	95	449.79	69.86	1.00 320.00	4.00	3.00	31.00	1
A 24	CHDUCTYY-FIELD-MICHONHO	2164	258.86	51.20	155.00	564.00	244.00	42730.00	4880
A 2 5	CNDUCTVY-25C-HIC	5897	277.36			675.00	720.00	560183.00	2621
A 2 6	DO-PROBE-MG/L	3057	8.92	62.79 2.67	34.00	1100.00	1066.00	1635576.51	3943
A27	DONG/L	7892	9.55		7.00	13.80	6.80	80.30	7
A 2 6	DO-SATUN-PERCENT	5088	9.35	2.01	0.10	24.50	24.40	75400.95	4
A29	BOL-SUAYS-MG/L	299	2.14	15.93	0.47	199.00	196.53	495302.49	254
A 30	COU-LOWLEVEL	256	13.77	2.12	0.00	19.60	19.60	638.80	4
A 31	COD-NUD-DAY-WGT	250	71161.76	7.23	4.00	62.00	58.00	3523.90	52
A 32	BOD-14DAYS	1		39750.70	3600.00	149999.88	146199.88	4483190.60	1580118092
A33	CL2DNUD-15HIH	16	1.10	0.04	1.10	1.10	0.00	1.10	•
A 34	PH-SU		0.12		0.05	0.20	0.15	1.90	0
A35	LAB-PH-SU	6466 43	8.42	0.40	6.00	10.00	4.00	53913.80	0
A36	CO2-HG/L		8.03	0.33	7.40	0.70	1.30	345.50	0
A 37		37	2.49	5.63	0.00	28.50	28.50	92.30	32
A 30	T-ALK-CACO3-NG/L	5074	60.59	40.07	2.00	175.80	173.80	307409.92	1606
A39	PHEN-PH-LFIH-AL	1046	3.91	4.25	0.00	34.00	34.00	4084.98	18
A40	CO3-ALK-CACO3	29	1.24	3.40	0.00	12.00	12.00	36.00	12
	HCG3-10N-HCO3	104	98.71	7.07	45.00	115.70	70.70	10265.80	50
A41	CO3-10N-CO3-hg/L	1	10.00	•	10.00	10.00	0.00	10.00	•
A42	HESIDUE-TOTAL	401	199.06	57.79	96.00	598.00	502.00	79623.00	3340
A4 3	HESIDUE-STUST-VOC	<u>99</u>	75.96	21.41	32.00	133.00	101.00	7520.00	458
A44	RESIDUE-TOT-FIX	83	134.58	40.50	87.00	311.00	224.00	11170.00	1640
A45	RESIDUE-DISS-105	354	178.75	40.25	82.00	347.00	265.00	63276.00	1620
A46	RESIDUE-VCL-FLT	485	14.14	26.23	0.31	360.00	359.69	6855.72	688
A47	RESIDUE-TOT-NELT	1229	20.29	25.52	0.10	398.60	398.50	24936.60	651
A40	HESIDUE-VOL-NFL	146	18.21	13.81	1.00	96.00	95.00	2658.00	191
A49	RESIDUE-FIX-NFLT	179	21.47	32.75	0.40	344.00	343.60	3843.90	1072
A50	DIL-GRSE-MUD-HEXH	44	1094.23	2036.61	0.40	8400.00	8349.60	48146.20	4147779

SAS

PAGE 31

)

)

)

)

)

.

.

.

٢

.

)

٢

.

)

)

)

Table 1. Summary of STORET Western Basin Data Inventory 1947-1984 (Continued)

)

VARIABLE	LABEL	N	MEAN	STANDAND DEVIATION	MINIMUM Value	NAXINUN VALUE	RANGŁ	SUN	VARIANCE
61	DIL-GRSE-NUD-FRGR	38	2118.26	2625.27	118.00	14000.00	13882.00	80494.00	6892067
b2	TOTAL-N-N	1963	0.79	0.82	0.10	10.55	10.45	1552.06	1
63	DISS-NITHOGEN	187	0.37	0.18	0.09	1.10	1.01	69.18	U
64	D RG – N – N	2419	0.42	0.40	0.00	10.00	10.00	1004.63	0
# 5	D HG - N - 5 U 5 P - N	138	0.18	0.10	0.04	0.66	0.62	24.22	ŏ
66	DRG-H-DISS-N	68	0.14	0.06	0.02	0.28	0.26	9.52	ő
b7	NH3+NH4-N-D155	2416	0.06	0.08	0.00	0.57	0.57	135.44	· ő
68	NH3-NH4-N-TOTAL	3541	Ú.08	0.12	0.00	1.70	1.70	300.89	0
89	NH3-HUD-DRY	54	173.14	159.92	2.57	470.00	467.43	9349.73	25573
610	NO2-N-D155	70	0.01	0.05	0.00	0.30	0.38	0.76	0
811	NU2-N-10T	2052	0.02	0.03	0.00	0.35	0.35	34.79	Ő
612	NO3-N-TOT	2511	0.31	0.62	0.00	8.60	8.60	786.16	ŏ
ь1 З	TOT-KJEL-N	3558	0.73	1.25	-0.98	9.90	10.86	2603.94	2
B14	OHGAN-N-NUD-D-LT	2	2450.00	494.97	2100.00	2800.00	700.00	4900.00	245000
615	KJELDL-N-TOT-SU	80	1776.82	1188.92	80.00	4800.00	4720.00	142146.00	1413530
B16	NO2-NO3-N-TOT	1906	1.50	5.85	0.00	55.00	55.00	2651.80	34
617	NO2-KUJ-N-D155	1341	0.37	0.45	0.00	5.50	5.50	490.15	J4 0
b18	NO2-NO3NUD-D-W	5	50.10	9.59	41.60	65.50	23.90	250.50	92
819	T-INTRG-NITHOGEN	2509	0.35	0.62	0.00	9.15	9.15	919.03	0
820	T-104P04	164	0.29	0.34	0.02	4.10	4.08	46.88	ŭ
821	SOLPO4-T-PO4	299	0.48	5.43	0.01	94.00	93.99	142.90	30
B22	DKTHOPO4-PO4	2	0.06	0.04	0.03	0.09	0.00	0.12	0
823	PHUS-10T	5680	0.07	0.06	0.00	0.87	0.87	373.77	0
824	PhOS-DIS	4768	0.03	0.03	0.00	0.96	0.96	122.92	ů
625	PHOS-505	126	0.02	0.01	0.00	0.10	0.09	2.16	0
826	PHOS-HUD-DLY-WGT	162	373.90	548.97	0.03	2300.00	2299.97	60584.21	301366
b27	PHOS-DIS-OKTHO	2743	0.01	0.02	-0.98	0.25	1.23	21.26	0
128	T-086-C-C	337	2.46	2.78	0.00	12.32	12.32	830.54	8
629	D-GHG-C-C	330	1.03	1.80	0.00	10.28	10.28	603.66	3
P30	ST-INOHG-C	66	20.27	1.82	9.90	23.30	13.40	1337.60	3
631	ORG-C-C	206	0.90	0.61	0.01	3.93	3.92	258.24	u U
b32	Т-САБЬОН-С	66	22.83	1.64	14.00	27.10	13.10	1506.50	3
833	CYANIDE-CN-TOT	21	0.00	0.00	0.00	0.00	0.00	0.09	0
B34	CYAHIDE-DECHG/KG/DRY/WGT	3	2.60	4.33	0.10	7.60	7.50	7.80	19
835	TOT-HARD-CACO3	70	117.50	20.59	97.00	215.00	118.00	8230.40	424
836	CALCIUN-CACG3	199	38.42	17.96	26.00	99.00	73.00	7645.00	322
837	CALCIUN-CA-DISS	194	30.96	3.73	25.00	50.00	25.00	6005.40	14
818	CALCIUN-CA-TOT	61	31.98	5.82	8.20	44.10	35.90	1950.50	34
839	CA-HUD-DRY-JGT	20	30276.80	24022.66	2.00	97900.00	97898.00	605536.00	577087995
640	MGNSIUM	73	14.05	7.97	7.00	33.60			
841	HG-HUD-DKY-WGT	52	14531.73	8064.06	0.00	28900.00	26.60 28900.00	1025.70 755650.00	64
642	NGHSIUK-HG/DISS	194	7.95	1.43	6.30	13.00	6.70		65041927
643	hGNSIUN-NG-TOT	176	7.72	3.02				1541.40	2
644	SODIUN-NA-TOT	206	7.88	3.30	4.80	34.00	29.20	1359.06	9
845	SOLIUN-NA-DISS	270	10.26	3.19	0.10	19.80	19.70	1622.82	11
846	PERCENT-SODIUM	0			4.55	20.40	1,5 • 85	2770.30	10
B47	PT551UN-K-DISS	270	1.32	0.52	0.76	£ 00	· ` ` ` ` `		•
648	PTSSIUN-K-TOT	193	1.11	0.55		5.00	4.24	355.27	0
649	K-NUD-DRY-WGT	7	657.70	1127.83	0.08	7.00	6.92	214.00	Ú
850	CHLORIDE-TOT	3592	18.44	7.52	0.40	2500.00	2499.60	4603.90	1272003
		5552	10.444	1.52	3.20	290.00	206.00	66220.22	57

SAS

.

PAGE 32

)

)

9

)

)

)

Table 1. Summary of STORET Western Basin Data Inventory 1947-1984 (Continued)

VAHIABLE LABEL MEAN STANDARD MINIMUM NAXINUN RANGE 5UM VARIANCE DEVIATION VALUE VALUE C1 SULFATE-SO4-TOT 1291 25.34 12.77 7.20 285.50 278.30 32710.59 163.15 C 2 SULFATE-SO4-DISS 192 7.70 22.06 10.00 58.00 48.00 4236.30 59.28 C 3 FLUORIDEF-DISS 11 0.10 0.01 0.08 0.11 0.03 1.09 0.00 C4 FLUORIDEF-TOT 211 0.19 0.08 80.0 0.47 0.39 40.53 0.01 C5 SILICA-DISOLVED 2805 40.93 231.06 0.00 1970.00 1970.00 114820.22 53391.03 C6 SILICA-TOT 22 0.74 0.49 0.20 2.60 2.40 16.21 0.24 C7 SILICATE-UNF-REAT 80 0.52 0.22 0.10 1.00 0.90 41.37 0.05 C8 AS-INUR-AS-TOT 39 6.10 4.05 2.00 10.00 8.00 238.00 16.41 C9 ALSERIC-AS-DISS 2 0.50 0.14 0.40 0.60 0.20 1.00 0.02 C10 ARSENIC-AS-TOT 31 1.26 0.63 0.41 3.17 2.76 39.09 0.39 C11 AAhSENIC-SSEDMG 177 12.46 14.50 0.88 140.00 139.12 2205.12 210.15 C12 ABSENIC-TISHG 0.02 12 0.03 0.01 0.10 0.09 0.21 0.00 C13 DABIUN-BA-TOT 33 17.70 4.91 13.00 31.00 18.00 584.00 24.09 C14 6A~NUU 51 47.27 25.82 7.00 110.00 103.00 2410.60 666.68 C15 BEHYLIUM-BE 33 0.16 0.08 0.00 0.20 0.20 5.40 0.01 C16 BENTLIUN-SEDNG 15 0.88 0.32 0.10 1.00 0.90 13.20 0.10 C17 BOROK-B-101 33 80.03 66.49 32.00 320.00 288.00 2641.00 4421.47 C18 B-NOD 20 55.05 34.90 8.00 80.00 72.00 1101.00 1218.05 C19 CADMIUN-CD-DISS 179 2.06 3.16 0.10 10.00 9.90 369.44 9.97 C20 CAUMIUN-CD-DISS 201 2.03 4.11 0.00 39.00 39.00 407.93 16.86 C21 CD-NUD 184 3.11 3.09 0.20 21.00 20.80 572.65 9.55 ۸. C22 CHHONIUM-SEDNG 164 59.03 70.83 2.40 530.00 527.60 11009.30 5017.28 C23 CHRONIUM-CH-DISS 155 7.33 21.99 0.10 140.00 139.90 1136.45 463.76 C24 CHEONIUN-HEX-VAL 50.00 - 4 0.00 50.00 50.00 0.00 200.00 0.00 C25 223 CHFONIAN-CH-LOL 23.09 127.84 0.35 1900.00 1899.65 5149.04 16342.20 C26 COBALT-CO-DISS 19 0.69 0.44 0.10 1.80 1.70 13.10 0.19 C27 COFALT-CO-TOT 33 1.00 0.00 1.00 1.00 0.00 33.00 0.00 C28 CO-HUD 25 10.17 8.85 1.70 33.70 32.00 254.30 78.37 C29 COPPER-CU-DISS 166 120.96 257.40 1.00 1800.00 1799.00 23986.90 66256.15 C30 COPPEN-CU-TOT 219 164.10 31.13 0.00 2200.00 2200.00 6816.69 26928.47 C31 COPPER-SEDNG 226 53.14 140.62 2.00 1500.00 1498.00 12009.10 19774.92 C32 IKON-FE-TOT 374 786.89 1002.72 7900.00 6.20 7893.80 294295.20 1005446.29 C33 ISHON-FE-DISS 211 74.61 290.63 1.00 3200.00 3199.00 15742.40 84465.15 C 34 LEAD-Pb-DISS 195 16.34 81.62 0.05 840.00 839.95 3165.82 6661.95 C35 LEAD-PR-TOT 218 10.89 22.09 0.00 160.00 160.00 2373.02 487.99 C36 LEAD-SEDNG 188 363.92 406.17 0.40 2600.00 2599.60 68417.20 164971.87 C37 MN-MUD 161 193.64 205.37 9.00 730.00 721.00 31175.60 42176.09 C38 NANGNES-NN 199 30.09 33.19 0.01 260.00 259.99 5968.60 1101.54 C39 NANGNESE-MN-DISS 170 9.87 71.40 0.30 900.00 899.70 1678.18 5098.04 C40 MOLY-MO-DISS 46 1.02 0.42 0.60 2.00 1.40 46.70 0.18 C41 TOT-ON-YIOH 33 2.21 0.89 2.00 7.00 5.00 73.00 0.80 C42 NO-HUD 20 12.81 9.30 1.00 28.00 27.00 256.30 86.50 C43 MICKEL-BI-DISS 192 7.37 23.23 0.70 210.00 209.30 1415.28 539.85 C44 NICKEL-NI-TOT 207 23.25 45.90 0.00 570.00 570.00 4813.71 2106.61 C45 NICKEL-SEDAG 164 47.40 36.81 2.00 230.00 228.00 8722.00 1354.73 C46 NICKEL-TISHG 12 0.13 0.05 0.10 0.20 0.10 1.60 0.00 C47 SILVER-AG-TOT 33 0.00 0.19 0.60 1.00 0.40 29.00 0.03 C48 SILVER-SEDHG 20 2.60 2.48 0.30 8.00 7.70 56.10 6.17 C49 STRONTUN-SR-DISS 130.91 13.35 35 103.00 173.00 70.00 4502.00 178.20 C50 STHONTU-SER-TOT 18 22.62 51.80 0.12 145.00 144.88 407.17 2683.22

3

SAS

)

)

)

)

.

)

)

)

)

Table 1. Summary of STORET Western Basin Data Inventory 1947-1984 (Continued)

€

)

				SAS					
ATHITTE	LABEL	u	NEAN	STANDARD DEVIATION	HINIHUH VALUE	HAXIHUH Value	RANGE	SUN	VAHIANCE
D1	SK-NUD-DKY-WGT	7	106.43	25.78	59.00	130.00	71.00	745.00	665
U 2	VANANIUM-V-DISS	127	1.05	1.14	0.35	5.30	4.95	133.76	1
U 3	VANADIUM-V-TOT	170	1.61	2.18	0.10	13.00	12.90	272.69	5
D4	V-HUD-DAY-WGT	120	139.57	185.41	7.00	1700.00	1693.00	16749.00	34377
US	21+C-2N-D155	194	221.29	1402.64	1.00	19000.00	18999.00	42929.80	1967400
D6	ZINC-ZN-TOT	203	50.57	61.26	0.00	330.00	330.00	10266.40	3753
b7	ZINC-SEDNG/KG	229	74.51	306.18	-4000.00	1000.00	5000.00	17063.14	93744
DB .	TIR/SN/TOT	33	15.79	5.61	5.00	20.00	15.00	521.00	34
109 1010	TIN-HUD	20	66.46	46.89	4.00	100.00	96.00	1329.30	2199
010	ALUMINUM-AL-TOT	161	854.70	845.42	18.00	4200.00	4182.00	137606.00	714742
612	ALUMINUM-AL-DISS Al-MUD	126	53.19	63.86	9.70	350.00	340.30	6702.30	4078
013	LITHIUN-LI-DISS	120	11410.18 2.26	6169.60	2.80	31000.00	30997.20	1369221.90	66742301
D14	LITHIUN-LI-TOT	18	2.26	1.69 0.77	1.00	9.40	8.40	126.70	3
D15		7	16.86	8.51	0.00	2.00	2.00	6.04	1
D16	SILICON-SI-DISS	93	48293.21	146598.61	4.00 220.00	27.00 666999.75	23.00 666779.75	118.00	72
U17	SELENIUK-SE-DISS	2	0.15	0.07	0.10	0.20	0.10	4491268.80 0.30	21491151126 0
D10	SELENIUM-SE-TOT	154	1.48	1.39	0.19	6.90	6.71	227.76	2
019	SELENIUN-SEDAG-KG	135	23.64	20.23	0.61	98.00	97.39	3191.43	409
D2Ú	TITANIUN-TI-TOT	33	13.05	15.40	3.00	67.00	64.00	457.00	237
V21	TI-MUD	13	108.62	49.23	1.00	180.00	179.00	1412.00	2424
D22	I E-NUD	200	17707.38	11688.60	1.00	51000.00	50999.00	3683134.00	136623440
023	FLOATING-ALG-WAT	914	2.50	1.60	0.00	4.00	4.00	2260.50	3
D24	DEAD-FISH	914	0.31	0.61	0.00	3.00	3.00	286.00	Ū Ū
D25	TURBID	456	2.36	0.67	0.00	4.00	4.00	1078.00	ő
V26	BETA-TOT	96	5.49	2.66	0.00	15.00	15.00	536.10	1
D27	BETA-T-ERHOH	98	2.45	1.93	1.00	10.00	9.00	239.70	4
D28	H-3-TOT	67	359.70	95.44	200.00	600.00	400.00	24100.00	9109
D29	H-3-TOTL-ERACH	67	200.00	0.00	200.00	200.00	0.00	13400.00	0
DJO	TO1-COLI-MFIMENDO	2363	6788.61	140357.99	0.00	6600000.00	6600000.00	16041477.00	19700366023
D31	TOT-COLI-MEDLENDO	147	62.66	165.15	1.00	880.00	879.00	9211.02	27275
D32	TOT-COLI-RFIN-LES	1553	5700.26	13469.34	100.00	200000.00	199900.00	8852500.00	181423090
D33	TO1-COLI-MPN-CONF	90	3631.36	11265.60	13.00	93000.00	92987.00	326822.00	126913722
D34	FEC-COLI-MPNECHED	2	2872.50	1446.03	1850.00	3855.00	2045.00	5745.00	2091013
D35	FEC-COLI-NFM-FCBK	2212	90.60	1319.09	0.00	60000.00	60000.00	200595.05	1739986
D36	FECSTHEP-NFKFAGAN	559	42.91	224.16	0.00	3900.00	3900.00	23986.00	50248
D37	FECSTREP-NF-N-ERT	518	22.37	108.04	1.00	1020.00	1019.00	11589.00	11674
D 38	TOTCOUN-TPC20C4	1560	16945.40	128002.57	0.00	3900000.00	3900000.00	26434817.06	16384659013
U 3 9	TOTCOUNT-THC35C24	102	1058.24	2488.69	1.00	14600.00	14599.00	107940.00	6193566
040	CHLAPHYL-A	335	10.38	9.16	0.00	61.53	61.53	3476.92	84
D41	CHLRPHYL-A-UG/L	2257	22.37	18.86	0.11	128.96	128.65	50461.00	350
D42	CHLBPHYL-A-UG/L-CORR	2246	20.28	17.86	-3.06	120.24	123.30	45559.44	319
D4 3	CHLRPHYL-B-UG/L	390	2.15	2.50	0.00	27.40	27.40	853.81	1
644	PHENTN-A-FLN-MTHD	332	4.04	5.50	-2.90	51.00	53.90	1339.72	30
D45	CHLRPHYL-C-UG/L	399	5.13	6.64	0.01	56.30	56.29	2045.66	44
D46	PHEOPHTH-A-UG/L	2053	4.01	4.01	-6.93	39.39	46.32	8237.95	16
V47	PHEOPHTE-LATIO-SPECTHO	193	1.54	0.13	1.10	1.82	0.72	298.07	Û
	CHLHPHY-A-NG/L	897	0.01	0.01	0.00	0.07	0.07	10.52	0
049 050	CHLHPHYL-H-NG/L	858	0.00	0.00	0.00	0.04	0.04	1.58	U
050	FILENOLS-TOT-UG/L	667	3.50	3.05	0.00	35.00	35.00	2374.60	15

PAGE	35
------	----

١

TABLE 2

ANNUAL AND SEASONAL DATA BASE INVENTORY TEMPERATURE (° C) - WESTERN BASIN

YEAR	N 	MEAN	MEDIAN	ST.DEV.	LOW	HIG
ALL DATA	10101	17.9	19.6	8.4	0.0	311
SEASON 1*	254	2.7	2.0	2.4	0.0	15
SEASON 2*			16.2	6.1	1.0	31
SEASON 3*			23.0	7.7	8.2	311.
SEASON 4*	1575	11.0	11.8	4.7	0.0	27
1947	63	15.0	14.5	6.2	0.0	25
1963	13	21.4	22.0	2.9	12.0	23.
1964	254	24.9	22.0	31.1	8.0	311.
1965	288	21.3	22.0	4.4	10.5	29.
1966	164	22.0	25.5	5.9	9.5	27.
1967	1011	19.0	21.1	4.6	6.0	27 .
1968	715	19.7	21.0	5.2	0.2	27
1969	638	20.0	20.0	5.5	1.1	29 .
1970	646	20.2	22.5	7.0	0.8	30.
1971	519	20.5	23.0	6.1	0.0	27 .
1972	670	18.0	20.0	6.2	1.0	27 .
1973	749		22.0	7.1	3.0	34 .
1974	825			6.5	0.0	24.
1975	806		15.3	7.7	0.0	27 .
1976	179			7.2	0.8	27.
1977	392			6.4	0.5	25.
1978				6.4	4.2	31.
1979	849			7.2	0.0	31.
1980				7.9	1.9	26.
1981				6.6	0.1	25.
1982				7.4	1.1	26.
1983			13.4	7.6	6.7	
1984	29	15.0	21.5	9.6	0.5	24

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER * SEASON 4 OCTOBER - DECEMBER

A

1

ि

()

<u></u>

ര

 \bigcirc

3

<u>a</u>

- 35

PAGE 36

TABLE 3

ANNUAL AND SEASONAL DATA BASE INVENTORY CONDUCTIVITY (UMHOS/CM) AT 25 °C - WESTERN BASIN

YEAR	N 	MEAN	ST. DEV.	MEDIAN	LOW	HIGH
ALL DATA	5888	276.55	59.18	266	34.00	700.00
SEASON 1*	178	225.03	87.29	223	34.00	507.00
SEASON 2*	2177	294.42	70.93	276	118.00	700.00
SEASON 3*	2521	269.58	44.36	262	190.00	690.00
SEASON 4*	1012	264.54	43.70	257	157.00	473.00
1963	3	303.33	6.43	306	296.00	308.00
1964	207		38.90	286	216.00	540.00
1967	963	299.23	80.71	278	207.00	700.00
1968	674	285.31	44.22	278	220.00	640.00
1969	382	276.12	47.26	265	226.00	492.00
1970	381	272.55	36.40	271	220.00	606.00
1971	175	266.88	54.05	254	218.00	630.0
1972	166	269.15	25.85	264	· 201.00	350.00
1973	280	265.38	35.71	261	200.00	440.00
1974	57	270.98	18.20	268	231.00	348.00
1975	207	255.13	25.17	250	215.00	402.00
1976	146	258.84	34.36	258	190.00	381.00
1977	192	246.44	54.00	270	34.00	320.00
1978	625	285.06	72.60	261	195.78	643.50
1979	860	278.73	70.84	268	102.00	587.00
1980	194	250.80	32.76	243	200.00	447.00
1981	197	243.36	21.72	239	208.00	398.00
1982	97	245.45	25.20	240	214.00	366.00
1983	53	253.34	29.26	248	216.00	329.00
1984	29	252.60	29.62	240	223.00	345.00

•

A.

٠

4

1

19

1

1

m

 \sim

1

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER

* SEASON 4 OCTOBER - DECEMBER

ANNUAL AND SEASONAL DATA BASE INVENTORY CHLORIDE (MG/L) - WESTERN BASIN

YEAR	N	MEAN	ST. DEV.	MEDIAN	LOW	HIGH
ALL DATA	3587	18.31	5.83	18.00	3.2	48.6
SEASON 1*	. 93	20.24	5.87	21.00	7.7	32.2
SEASON 2*	1616	19.38		19.00	3.2	48.6
SEASON 3*	1159	17.70	5.77	17.00	7.9	
SEASON 4*	719	16.66	5.57	15.60	6.3	45.0
	104	19.79	9.47	17.00	5.1	45.0
1963	3	17.40	0.52	17.70	16.8	17.7
1964	126	24.47	6.07	25.00	8.5	37.3
1966	103	21.42	6.34	21.00	9.0	38.0
1967	754	19.70	5.43	20.00	7.0	42.0
1968		19.63		20.00	9.0	29.0
1969	22	17.88	4.91	20.00	9.7	27.0
1970	78	17.37	6.26	16.60	8.2	42.6
1971		16.92	5.56	16.00	7.0	35.0
1972	139	20.66	6.12	20.00	7.6	34.0
1973	99	18.87	2.94	19.00	9.0	25.0
1974	59	18.51	4.09	17.00	9.4	29.0
		16.63		16.00		36.0
1976		17.56	5.04	16.90	7.3	
1977	345	18.06	3.98	17.50	7.3	31.4
1978		18.46	6.07	17.40	3.2	
1979	188	17.37	5.44	16.95	7.9	42.3
1980	ND	ND	ND	ND	ND	ND
1981	218		1.29	11.80	9.1	15.6
1982	ND	ND	ND	ND	ND	ND
	59		4.57		6.3	
1984	39	13.25	5.42	10.80	7.7	32.2

A

A

1

0

1

1

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER * SEASON 4 OCTOBER - DECEMBER

ANNUAL AND SEASONAL DATA BASE INVENTORY SULFATE (mg/1) - WESTERN BASIN

YEAR	N 	MEAN	MEDIAN	ST.DEV.	LOW	HIGH
ALL DATA	1291	25.3	22.8	12.8	7.2	285.
	16		27.2	10.6	16.3	51.
	447				7.2	
SEASON 3*				14.9	9.0	285.
SEASON 4*	346	23.4	22.3	7.2	15.0	57.
1947	· NA	NA	NA	NA	NA	N
1963	5	15.5	13.0	5.1	10.5	21.
1964	37	17.3	14.0	6.8	9.0	29.
1965	NA	NA	NA	NA	NA	N
1966	NA	NA	NA	NA	NA	Ν
1967	91	21.6	19.0	9.0	11.0	82.
1968	46	22.5	22.6	· 4.4	15.0	31.
1969	21	29.4	28.0	11.8	14.0	55.
1970	68	19.6	17.8	8.8	15.4	86.
1971	4	17.0	17.0	1.2	16.0	18.
1972	NA	NA	NA	NA	NA	N
1973	56	25.0	22.0	9.2	17.0	59.
1974	54	20.4	20.0	4.3	15.5	34.
1975	76	18.4	18.0	2.1	15.5	25.
1976	NA	NA	NA	NA	NA	N
1977	NA	NA	NA	NA	NA	N
1978	645	28.4	25.9	11.3	7.2	87.
1979	86	31.6	26.2	30.2	15.7	285.
1980	NA	NA	NA	NA	NA	N
1981	6	18.8	18.8	0.7	18.1	19.
1982	NA	NA	NA	NA	NA	N
1983		20.1	18.0	4.2	15.0	29.
1984	39	19.6	18.7	2.3	16.3	25.

*	SEASON	1	JANUARY - MARCH
*	SEASON	2	APRIL - MAY
*	SEASON	3	JUNE - SEPTEMBER
*	SEASON	4	OCTORER - DECEMBE

DECEMBER SEASON 4 OCTOBER -

@

*(*770)

1

ANNUAL AND SEASONAL DATA BASE INVENTORY DISSOLVED OXYGEN (mg/1) - WESTERN BASIN

YEAR	N	ME AN	MEDIAN	ST.DEV.	LOW	HIGH
ALL DATA	7892	9.6	9.4	2.0	0.1	24.5
SEASON 1*	228	12.8	13.0	1.6	4.0	24.5
SEASON 2*	2792	10.3	10.4	2.0	0.5	20.0
SEASON 3*	3426	8.3	8.3	1.4	0.1	16.1
SEASON 4*	1446	10.5	8.3 10.4	1.4	5.5	15.0
1947	93	9.7	9.9	1.4	6.8	13.8
1963	29	8.8	8.6	1.4	6.2	10.8
1964		8.8	8.8	1.8	0.7	14.8
1965	NA	NA -	NA	NA	NA	N/
1966		7.2	7.0	0.9	5.0	11.4
1967			9.0	1.9	0.5	14.2
1968	665		8.5	1.8	3.4	16.8
1969	393	9.2	8.8	1.5	6.2	13.8
1970	377	10.1	10.2	1.9	3.2	14.5
1971		9.8	9.2	2.4	2.8	20.0
1972		10.6	11.1	1.9	5.2	15.4
1973		9.2	9.3	2.3	0.2	14.0
1974	705	10.2	10.4	1.8	3.7	15.1
1975	679	10.0	9.8	2.0	2.1	16.5
1976	146	10.5	10.4	2.7	3.8	24.5
1977	408	10.3	10.2	1.6	6.8	15.8
1978	713	9.2	9.1	1.8	4.2	14.5
1979	795	10.0	9.8	1.8	4.0	16.1
1980	186	9.4	9.1	2.3	2.1	14.2
1981	212	10.1	9.9	1.9	2.7	14.8
1982	96	8.9	8.9	2.2	0.1	13.6
1983		9.9	9.8	2.1	7.0	16.7
1984	24	9.3	7.9	2.4	6.0	13.6

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER * SEASON 4 OCTOBER - DECEMBER

3

 \wedge

~

ANNUAL AND SEASONAL DATA BASE INVENTORY DISSOLVED OXYGEN (% SATURATION) - WESTERN BASIN

YEAR	N 	MEAN	MEDIAN	ST.DEV.	LOW	HIGH
ALL DATA	5088	97.3	97.0	15.9	0.5	199
				-		
SEASON 1*	76	96.5	95.0	4.8		111
SEASON 2*	2142	101.1	102.0	17.5	0.5	199
SEASON 3*	2115	93.7	93.0	16.0	1.2	155
SEASON 4*	755	97.1	97.0	7.0	61.0	128
1947	NA	NA	NA	NA	NA	NA
1963	12	86.9	89.2	9.2	72.1	99
1964	232	97.8	95.6	20.3	8.4	177
1965	NA	NA	NA	NA	NA	NA
1966	NA	NA	NA	NA	NA	NA
1967	628	93.1	95.0	19.1	6.0	135
1968	457	94.5	90.0	20.9	35.0	199
1969	311	95.0	93.0	11.0	67.0	122
1970	248	104.4	103.5	14.0	37.0	139
1971	159	97.2	97.0	16.0	33.0	140
1972	206	102.3	99.5	14.4	58.0	154
1973	496	98.3	100.0	20.2	2.0	150
1974	772	100.1	101.0	12.7	0.5	155
1975	689	95.8	95.0	12.0	24.0	170
1976	64	104.5	103.0	7.7	75.0	124
1977	337	101.1	103.0	8.9	74.0	138
1978	49	102.4	104.0	11.4	82.0	123
1979	46	102.4	98.5	11.2	90.0	139
1980	90	93.1	93.4	13.4	40.6	127
1981	196	93.3	94.0	10.2	30.3	128
1982	96	91.1	94.7	17.5	1.2	120
1983	NA	NA	NA	NA	NA	NA
1984	NA	NA	NA	NA	NA	NA

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER * SEASON 4 OCTOBER - DECEMBER

M

1

ര

A

TABLE 8

ANNUAL AND SEASONAL DATA BASE INVENTORY pH (STANDARD UNITS) - WESTERN BASIN

•

YEAR	N 	MEAN	MEDIAN	ST.DEV.	LOW	HI(
ALL DATA	6400	8.4	8.4	0.4	6.0	10
SEASON 1*	208	8.1	8.1	0.3	7.5	9
SEASON 2*	2302	8.5	8.5	0.4	6.4	9
SEASON 3*	2860	8.5	8.5	0.4	6.0	10
SEASON 4*	1030	8.3	8.3	0.3	6.5	9
1947	NA	NA	NA	NA	NA	١
1963	3	8.3	8.2	0.2	8.2	8.
1964	237	8.1	8.1	0.3	7.1	9.
1965	NA	NA	NA	NA	NA	N
1966	NA	NA	NA	NA	NA	ł
1967	933	8.6	8.6	0.4	7.2	9.
1968	512	8.4	8.4	0.4	7.2	9.
1969	313	8.5	8.5	0.3	7.1	9.
1970	283	8.4	8.5	0.4	7.0	9.
1971	157	8.5	8.5	0.4	7.0	9.
1972	187	8.1	8.2	0.6	6.0	9.
1973	590	8.5	8.5	0.4	7.3	10
1974	620	8.4	8.5	0.3	6.5	9.
1975	300	8.3	8.3	0.2	7.5	9.
1976	81	8.2	8.2	0.4	7.5	9.
1977	124	8.5	8.6	0.3	7.0	8.
1978	704	8.5	8.5	0.4	7.1	9.
1979	771	8.5	8.6	0.4	7.6	9.
1980	190	8.2	8.2	0.3	7.0	9.
1981		8.1	8.1	0.2	7.6	8.
1982		8.3	8.4	0.3	7.4	8.
1983	52	8.2	8.2	0.2	7.7	8.
1984	29	8.2	8.2	0.2	7.9	8.

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER * SEASON 4 OCTOBER - DECEMBER

PA	GE	42
----	----	----

ANNUAL AND SEASONAL DATA BASE INVENTORY TURBIDITY (JTU) - WESTERN BASIN

YEAR	N 	MEAN	MEDIAN	ST.DEV.	LOW	HIGH
ALL DATA	2721	8.8	4.5	15.4	0.4	230.
SEASON 1*	7	12.3	6.0	16.8	4.0	50.
SEASON 2*	1248	10.1	4.5	21.0	0.6	230.
	1189		4.4	6.7		73.
SEASON 4*	277	11.9	7.0	11.1	0.9	75.
1947	NA	NA	NA	NA	NA	N
1963	NA	NA	NA	NA	NA	N
1964	NA	NA	NA	NA	NA	N
1965	NA	NA	NA	NA	. NA	N
1966	NA	NA	NA	NA	NA	N
1967	••-	9.7	5.0	15.2	0.5	190.
1968	613	7.5	4. 8	7.0	0.4	50.
1969		8.2	3.8	13.9	0.9	132.
1970			4.2	27.7	0.9	230.
1971		6.7	3.0	10.3	1.0	75.
1972	207	6.8	4.0	9.6	1.0	75.
1973		14.3	8.0	13.4	2.0	73.
1974	NA	NA	NA	NA	NA	N
1975	NA	NA	NA	NA	NA	N
1976	NA	NA	NA	NA	NA	N
1977	NA	NA	NA	NA	NA	N
1978	NA	NA	NA	NA	NA	N
1979	NA	NA	NA	NA	NA	N
1980	NA	NA	NA	NA	NA	N
1981	NA	NA	NA	NA	NA	Ν
1982	NA	NA	NA	NA	NA	N
1983	NA	NA	NA	NA	NA	N
1984	NA	NA	NA	NA ·	• NA	N

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER * SEASON 4 OCTOBER - DECEMBER

.

1

1

1

1

1

1

ጫ

1

.

ANNUAL AND SEASONAL DATA BASE INVENTORY TURBIDITY (NTU) - WESTERN BASIN

YEAR	N	MEAN	MEDIAN	ST.DEV.	LOW	HIGH
ALL DATA	2605	14.1	8.1	19.5	0.8	280.
SEASON 1*	143	13.3	7.6	14.5	0.8	83.
SEASON 2*	852	15.8	6.0	28.5	0.9	280.
SEASON 3*	966	11.2	8.0	12.1	0.9	155.
SEASON 4*	644	11.2 16.3	13.0	13.3	1.7	77.
1947	NA	NA	NA	NA	NA	N
1963	NA	NA	NA	NA	NA	N
1964	NA	NA	NA	NA	NA	N
1965	NA	NA	NA	NA	NA	N
1966	NA	NA	NA	NA	NA	N
1967	NA	NA	NA	NA	NA	N
1968	NA	NA	NA	NA	NA	'N
1969	NA	NA	NA	NA	NA	N
1970	NA	NA	NA	NA	NA	N
1971	NA	NA	NA	NA	NA	N
1972		NA	NA	NA	NA	N
1973	61		3.0	1.6	1.0	9.
1974	38	3.8	2.6	4.8	1.7	25.
1975	135	9.0	4.0	11.7	0.9	54.
1976	36	6.6	5.3	5.3	1.6	29.
1977		4.7	2.2	8.8	1.0	77.
1978	725	16.5	10.0	18.0	0.9	120.
1979	862	17.3	12.0	21.8	0.8	280.
1980	170	9.0	6.6	13.4	1.0	132.
1981	217	12.8	7.2	21.4	0.9	159.
1982	97	22.0	9.2	34.8	1.2	200.
1983	45	9.9	8.2	7.1	2.4	
1984	28	9.8	4.3	12.4	1.1	41.

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER * SEASON 4 OCTOBER - DECEMBER

@

 \sim

1

M

1

1

Ĩ

-

i

ANNUAL AND SEASONAL DATA BASE INVENTORY SECCHI (METERS) - WESTERN BASIN

YEAR	N	ME AN	MEDIAN	ST.DEV.	LOW	HIG
ALL DATA	1385	1.1	0.9	1.3	0.1	14.8
SEASON 1*	A 1	17	0.9	2.6	0.2	12.2
SEASON 1* SEASON 2*	368	13	1.0	1.2	0.1	
SEASON 3*	613	1.5	0.9			
SEASON 4*	363	1.0	0.7	1.6		
					•••=	
1947		NA		NA		NA
1963	NA		NA	NA	NA	NA
1964	NA		NA	NA	NA	NA
1965		NA	NA	NA	NA	NA
1966		NA	NA	NA	NA	N/
1967		1.9		1.0	0.5	4.5
1968		1.3		0 . 5 ·		
1969		0.7		0.4	0.3	1.5
1970	19		1.7	0.6	0.5	2.5
1971		1.5	1.5	0.4	1.0	2.0
1972		1.2	1.0	0.5	0.5	2.5
1973		1.1	1.0	0.8	0.1	2.5
1974		0.9	0.8	0.4	0.2	2.0
1975	75		0.9	0.6	0.3	
1976	38		1.1	1.0	0.2	5.2
1977	24		1.1	0.7	0.2	3.1
1978	417		0.7	0.6	0.1	
1979 1980	381	0.8	0.6	0.5		
1980	90	2.2	1.5	2.5	0.3	
1981	101	2.1	1.2	2.9	0.2	
1982	49	1.5	1.0	1.6		10.0
1983	8	1.4 2.3		0.3 1.0	$1.0 \\ 1.0$	2.0 4.5

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER * SEASON 4 OCTOBER - DECEMBER

 \sim

1

1

 \bigcirc

ŝ

1

1

.

TABLE 12

ANNUAL AND SEASONAL DATA BASE INVENTORY TOTAL SUSPENDED SOLIDS (mg/1) - WESTERN BASIN

YEAR	N 	MEAN	MEDIAN	ST.DEV.	LOW	HI0
ALL DATA	1229	20.3	13.0	25.5	0.1	398
ALL DATA	1229	20.5	13.0	23.5	0.1	550
SEASON 1*	37	22.6	10.7	27.9	2.8	96
SEASON 2*	411	21.8	10.8	32.8	0.1	398
SEASON 3*	528	19.0	12.0	22.3	0.4	290
SEASON 4*	253	20.1	15.6	16.5	2.0	118
1947	NA	NA	NA	NA	NA	1
1963	18	11.0	8.5	8.4	1.0	28
1964	97	30.8	25.0	24.1	1.0	148
1965	ŇĂ	NA	NA	NA	NA	1
1966	NA	NA	NA	NA	NA	
1967	60	13.4	6.0	17.0	1.0	7
1968	24	14.7	13.5	9.1	1.0	3
1969	17	29.4	23.0	26.9	7.0	112
1970	13	28.2	21.0	23.7	7.0	94
1971	2	54.5	54.5	16.3	43.0	6
1972	27	32.6	20.0	27.5	5.0	10
1973	129	24.1	21.0	16.9	2.0	10
1974	19	8.7	6.0	5.5	5.0	2
1975	27	11.3	10.0	4.3	5.0	26
1976	NA	NA	NA	NA	NA	1
1977	NA	NA	NA	NA	NA	٢
1978	258	20.1	13.1	22.8	1.2	148
1979	138	34.2	20.5	42.1	5.4	398
1980	181	10.5	7.8	13.0	0.1	109
1981	201	14.6	7.8	26.9	0.4	290
1982	16	23.8	9.2	30.6	1.1	92
1983	2	19.5	19.5	4.9	16.0	23
1984	NA	NA	NA	NA	NA	N

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER * SEASON 4 OCTOBER - DECEMBER

 $\widehat{}$

1

3

3

P

ANNUAL AND SEASONAL DATA BASE INVENTORY TOTAL PHOSPHORUS (ug/1) - WESTERN BASIN

YEAR	N 	MEAN	MEDIAN	ST.DEV.	LOW	HIG
ALL DATA	5680	65.8	46.3	63.6	0.0	874
SEASON 1*	180	53.8	45.8	40.0	0.0	224
SEASON 2*	2203	65.0	40.0	70.3	1.0	874.
SEASON 3*		69.6	56.6	56.5	1.0	626
SEASON 4*	1012	61.3	36.0	66.3	5.6	740
1947	· NA	NA	NA	NA	NA	NA
1963	NA	NA	NA	NA	NA	N/
1964	10	71.0	45.0	59.9	20.0	170.
1965	NA	NA	NA	NA	NA	NA
1966	NA	NA	NA	NA	NA	N/
1967	598	72.0	60.0	54.5	10.0	550
1968	453	93.6	80.0 [.]	71.6	10.0	620
1969	343	81.6	70.0	62.9	10.0	470
1970	378	94.7	64.5	85.8	15.0	600.
1971	171	92.3	72.0	78.0	14.0	570.
1972	192	50.5	32.7	64.4	5.6	740.
1973	273	53.9	40.0	44.9	9.5	240
1974	178	36.0	31.6	19.1	9.8	101.
1975	312	36.9	33.0	20.0	6.0	113.
1976	131	39.7	32.9	25.2	6.0	158.
1977	543	26.7	25.0	15.6	7.0	224.
1978	659	106.3	94.9	88.5	4.0	874.
1979	829	68.9	57.1	50.6	32.9	434.
1980	194	27.8	21.8	24.6	5.2	210.
1981	216	30.3	21.4	29.5	7.2	263
1982	97	42.8	25.7	39.2	6.5	223.
1983	61	28.8	21.0	19.0	7.0	77.
1984	39	19.0	6.2	21.2	1.0	68.

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER * SEASON 4 OCTOBER - DECEMBER

M

3

ത

3

 $\widehat{}$

ANNUAL AND SEASONAL DATA BASE INVENTORY TOTAL DISSOLVED PHOSPHORUS (ug/1) - WESTERN BASIN

YEAR	N	MEAN	MEDIAN	ST.DEV.	LOW	HIGH
	1760	25.8	14.6	24 0	0.0	958.3
ALL DATA	4/00	25.0	14.0	34.9	0.0	950.0
SEASON 1*	118	31.7	30.1	24.8	0.0	136.0
SEASON 2*	1884	29.3	13.0	44.3	0.0	958.3
SEASON 3*	1926	26.6	19.5	27.6	1.0	460.0
SEASON 4*	840	15.1	10.6	23.1	0.7	460.
1947	NA	NA	NA	NA	NA	NA
1963	NA	NA	NA	NA	NA	NA
1964	NA	NA	NA	NA	NA	NA
1965	NA	NA	NA	NA	NA	NA
1966	NA	NA	NA	NA	NA	NA
1967	598	33.2	30.0	25.3	10.0	200
1968	445	30.8	20.0	23.0	1.0	· 170
1969	326	29.6	20.0	22.5	10.0	150
1970	577	JJ.1	18.0	36.9	1.0	224
1971	160	28.1	16.0	44.0	2.0	460
1972	187	23.1	12.0	41.4	3.0	460
1973		14.9	11.0	14.1	2.0	111
1974	38	6.1	6.0	2.3	3.0	15
1975	222	9.6	8.0	6.1	1.0	35
1976	52	7.0	6.2	3.9	1.0	16
1977	300	8.8	8.0	4.3	1.0	33
1978	680	44.0	31.7	58.2	1.5	958
1979	834	21.4	12.0	32.3	0.0	300
1980	NA	NA	NA	NA	NA	N
1981	212	7.6		7.8	1.7	
1982	97			6.7	0.7	
1983			4.0	5.1	1.0	28
1984	39	11.2	11.3	7.8	1.0	24

 \sim

 \sim

1

1

1

1

1

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER

* SEASON 4 OCTOBER - DECEMBER

•

TABLE 15

ANNUAL AND SEASONAL DATA BASE INVENTORY ORTHOPHOSPHORUS (ug/1) - WESTERN BASIN

YEAR	NN	MEAN	MEDIAN	ST.DEV.	LOW	HIGH
ALL DATA	2743	7.7	3.3	24.5	-980.0	250.0
SEASON 1*	132	8.9	4.6	10.5	0.5	56.2
SEASON 2*	759	10.3	3.8	40.8	-980.0	141.0
SEASON 3*		6.0	2.9	12.6	0.0	250.0
SEASON 4*	664	7.7	3.7	15.8	0.0	170.0
1947	NA	NA	NA	NA	NA	NA
1963	NA	NA	NA	NA	NA	NA
1964	NA	NA	NA	NA	NA	NA
1964	NA	NA	NA	NA	NA	NA
1966	NA	NA	NA	NA	NA	NA
1967	NA	NA	NA	NA	NA	NA
1868	24	76.1	40.0	74.0	3.0	⁻ 250.0
1969	16	36.6	32.0	18.6	17.0	76.0
1970	116	29.3	24.5	25.8	3.0	120.0
1971	69	11.0	10.0	9.9	1.0	40.0
1972	55	8.0	3.8	7.5	0.4	27.0
1973		7.7	4.4	7.3	0.1	30.4
1974		6.2	1.8	8.5	0.2	35.5
1975		7.6	4.1	8.0	0.1	44.8
1976	97	5.0	3.3	5.0	1.0	29.0
1977	55	7.5	5.2	7.5	0.6	32.8
1978	685	7.1	4.5	40.2	-980.0	111.7
1979	665	5.5	2.5	10.7	0.3	74.3
1980	184	3.4	2.1	5.5	0.2	47.7
1981	191	3.9	2.1	5.7	0.5	44.0
1982	97	4.6	2.3	5.5	0.6	28.9
1983	54	1.4	1.0	1.6	0.0	7.0
1984	39	1.6	0.6	3.9	0.0	19.0

* SEASON 1 JANUARY - MARCH

* SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER

* SEASON 4 OCTOBER - DECEMBER

 \sim

 $\widehat{}$

1

1

A

~

P

ANNUAL AND SEASONAL DATA BASE INVENTORY NITRATE + NITRITE (ug/1) - WESTERN BASIN

.

YEAR	N 	MEAN	MEDIAN	ST.DEV.	LOW	HIG
ALL DATA	1906	1496.2	230.0	5848.0	0.0	55000
SEASON 1*	102	15863.0	3955.0	17706.2	60.0	55000.
SEASON 2*	480	1726.8	500.0	4629.5	8.0	53000
SEASON 3*	828	379.9	196.5	518.6	0.0	3146
SEASON 4*	496	182.2	143.0	242.6	0.0	4040
1947	NA	NA	NA	NA	NA	NA
1963	NA	NA	NA	NA	NA	NA
1964	NA	NA	NA	NA	NA	N
1965	NA	NA	NA	NA	NA	NA
1966	NA	NA	NA	NA	NA	N
1967	180	113.4	94.5	77.0	10.0	330
1968	NA	NA	NA	NA	NA	N
1969	NA	NA	NA	NA	NA	NA
1970	NA	NA	NA	NA	NA	N
1971	13	250.8	70.0	340.8	0.0	1140
1972	24	1375.0	765.0	1478.6	20.0	4900
1973	110	442.2	300.0	448.3	10.0	2900
1974	18	456.9	423.5	187.8	260.0	987
1975	NA	NA	NA	NA	NA	NA
1976	NA	NA	NA	NA	NA	NA
1977	NA	NA	NA	NA	NA	N
1978	689	390.9	90.0	946.7	0.0	7200
1979	767	3161.3	454.0	8913.2	5.0	55000
1980	NA	NA	NA	NA	NA	N/
1981	6	439.5	441.0	40.8	400.0	480
1982	NA	NA	NA	NA	NA	N/
1983	60	370.6	300.0	149.6	21.0	670.
1984	39	495.2	370.0	302.3	196.0	1302

.

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER * SEASON 4 OCTOBER - DECEMBER

അ

*(***B**)

1

ANNUAL AND SEASONAL DATA BASE INVENTORY AMMONIA (MG/L) - WESTERN BASIN

YEAR	N	ME AN	MEDIAN	ST.DEV.	LOW	HIGH
ALL DATA	2416	53.4		78.0	0.0	57.1
ALL DATA	2410	53.4		/0.0	0.0	57.1
SEASON 1*	162	138.0	134.3	109.1	1.0	409.6
SEASON 2*	656	77.8	35.9	91.2	0.0	570.
SEASON 3*	1010	36.4	19.8	49.5	0.0	472.
SEASON 4*	588	43.1	18.0	62.4	0.0	424.
1947	NA	NA	NA	NA	NA	NA
1963	NA	NA	NA	NA	NA	NA
1964	NA	NA	NA	NA	NA	NA
1965	NA	NA	NA	NA .	NA	NA
1966	NA	NA	NA	NA	NA	NA
1967	NA	NA	NA	NA	NA	NA
1968	24	70.2	46.0	79.9	8.0	330
1969	16	68.1	28.3	68.5	18.0	108
1970	117	57.1	48.0	47.5	10.0	250
1971	69		21.0	19.0	2.0	85
1972	55		36.0	93.4	3.0	425
1973	135	40.5	22.0	46.4	1.0	246
1974	118	30.9	15.0	46.9	0.1	303
1975	119	52.3	34.0	51.6	1.5	270
1976	82	45.1	27.4	50.0	2.1	250
1977	23	37.6	31.1	15.9	14.2	65
1978	554	68.3	30.6	87.2	0.0	571
1979	630	74.1	28.0	93.6	1.0	409
1980	194	34.5	11.2	61.8	0.5	449
1981	183	28.5	9.4	44.4	1.0	256
1982	97	41.7	11.2	70.0	1.0	332
1983	NA	NA	NA	NA	NA	NA
1984	NA	NA	NA	NA · ·	NA	NA

* SEASON 1 JANUARY - MARCH

* SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER

* SEASON 4 OCTOBER - DECEMBER

.

M

.

TABLE 18

ANNUAL AND SEASONAL DATA BASE INVENTORY TOTAL INORGANIC NITROGEN (ug/1) - WESTERN BASIN

YEAR	N 	MEAN	MEDIAN	ST.DEV.	LOW	HIGH
ALL DATA	2589	355.0	226.0	615.7	1.0	9150.0
SEASON 1*	NA	NA	NA	NA	NA	NA
SEASON 2*	1276	480.9	291.0	818.5	21.0	9150.0
SEASON 3*	1037	215.1	175.0	205.8	4.0	2834.0
SEASON 4*	276	298.4	205.0	389.5	1.0	2297.0
1947	NA	NA	NA	NA	NA	NA
1963	NA	NA	NA	NA	NA	NA
1964	NA	NA	NA	NA	NA	NA
1965	NA	NA	NA	NA	NA	NA
1966	NA	NA	NA	NA	NA	NA
1967	555	232.2	142.0	302.6	31.0	3100.0
1968	372	562.7	306.0	1024.3	32.0	9150.0
1969	311	481.2	291.0	826.5	67.0	7360.0
1970	252	373.4	244.5	607.1	22.0	4284.0
1971	104	455.2	200.5	1116.6	21.0	6650.0
1972	82	239.7	210.0	167.8	21.0	709.0
1973	101	360.8	200.0	540.1	4.0	2227.0
1974	161	300.8	255.0	173.2	1.0	947.0
1975	162	368.5	266.0	350.5	35.0	2834.0
1976	36	439.8	367.5	341.9	34.0	1025.0
1977	300	206.8	205.0	127.5	15.0	765.0
1978	69	294.0	255.0	175.5	15.0	790.0
1979	84	325.8	360.0	155.0	85.0	750.0
1980	NA	NA	NA	NA	NA	NA
1981	NA	NA	NA	NA	NA	NA
1982	NA	NA	NA	NA	NA	NA
1983	NA	NA	NA	NA	NA	NA
1984	NA	NA	NA	NA	NA	NA

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER * SEASON 4 OCTOBER - DECEMBER

Ŵ

M

ANNUAL AND SEASONAL DATA BASE INVENTORY KJELDAHL NITROGEN (ug/1) - WESTERN BASIN

YEAR	N	MEAN	MEDIAN	ST.DEV.	LOW	HIGH
ALL DATA	3558	731.9	390.0	1254.7	-980.0	9903.
SEASON 1*	112	632.2	591.5	246.0	140.0	1292.
SEASON 2*	1281	432.4	355.0	306.5	0.0	2850
SEASON 3*	1587	1097.0	480.0	1779.6	-980.0	9903
SEASON 4*	578	412.3	280.0	329.8	0.0	2147
1947	NA	NA	NA	NA	NA	1
1963	17	882.4	990.0	378.0	140.0	1500
1964	87	938.3	710.0	683.1	180.0	2850
1965	NA	NA	NA	NA	NA	Į
1966	58	108.4	100.0	59.3	20.0	250
1967	102	531.3	460.0	289.9	70.0	1800
1968		674.3		477.0 [°]	60.0	3000
1969	310	550.3		269.3	83.0	2000
1970	251	521.1	380.0	378.5	210.0	3000
1971	104	483.9	390.0	343.6	160.0	2200
1972	82	319.0	285.0	97.6	160.0	600
1973	61	382.6	360.0	167.5	180.0	960
1974	56	372.1	370.0	138.2	180.0	810
1975	170	367.3	290.0	365.1	82.4	3040
1976	36	293.0	280.0	82.9	160.0	480
1977	308	327.0	315.0	67.6	205.0	700
1978	633	306.0	265.0	181.8	0.0	1287
1979	728	1801.8	851.0	2399.3	-980.0	9903
1980	NA	NA	NA	NA	NA	
1981	1	241.0	241.0	NA	241.0	241
1982	NA	NA	NA	NA	NA	
1983		240.0	235.0	111.2		58
1984	18	316.7	315.0	182.7	70.0	690

* SEASON 1 JANUARY - MARCH

* SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER

* SEASON 4 OCTOBER - DECEMBER

ી

-

1

 $\widehat{}$

ര

A

 $\widehat{}$

ര

 \sim

ANNUAL AND SEASONAL DATA BASE INVENTORY DISSOLVED SILICA (mg/1) - WESTERN BASIN

YEAR	N	ME AN	MEDIAN	ST.DEV.	LOW	HIGH
ALL DATA	2805	40.9	0.7	231.1	0.0	1970.
SEASON 1*	152	609.0	5.5	689.4	0.0	1970.
SEASON 2*	828	25.3	0.7	176.4	0.0	1670.
SEASON 3*		0.7	0.6	0.6	0.0	5.
SEASON 4*	678	0.6	0.5	0.6	0.0	7.
1947	NA	NA	NA	NA	NA	N
1963	5	2.1	1.7	1.7	0.7	5.
1964	45	1.1	0.9	0.5	0.4	2.
1965	NA	NA	NA	NA	NA	N
1966	NA	NA	NA	NA	NA	N
1967	188	0.7	0.7	0.5	0.1	2.
1968	48	0.8	0.6	0.6	0.1	2.
1969	16	0.3	0.2	0.2	0.0	0.
1970	116	0.8	0.8	0.5	0.0	2.
1971	84	0.7	0.6	0.4	0.0	2.
1972	79	1.8	0.8	2.8	0.1	15.
1973	18	1.3	1.5	0.9	0.2	2.
1974	36	0.4	0.3	0.3	0.1	1.
1975	174	0.8	0.6	0.8	0.1	6.
1876	82	0.8	0.8	0.6	0.0	3.
1977	NA	NA	NA	NA	NA	N
1978	674	0.8	0.5	1.1	0.0	7.
1979	739	152.9	0.6	431.1	0.0	1970.
1980	193	0.9	0.9	0.6	0.0	3.
1981	211	0.9	0.9	0.7	0.0	4.
1982	97	1.0	0.9	0.8	0.0	5.
1983	NA	NA	NA	NA	NA	Ň
1984	NA	NA	NA	NA	NA	N

* SEASON 1 JANUARY - MARCH

* SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER

* SEASON 4 OCTOBER - DECEMBER

Â

A

 \sim

- 3

 \sim

ANNUAL AND SEASONAL DATA BASE INVENTORY UNCORRECTED CHLOROPHYLL A (ug/1) - WESTERN BASIN

•

YEAR	N	MEAN	MEDIAN	ST.DEV.	LOW	HIGH
ALL DATA	2257	22.4	16.5	18.9	0.1	129.0
			5.9		1.0	
			10.5		0.7	
	884		24.4		0.1	
SEASON 4*	513	23.3	20.2	17.2	0.6	80.5
1947	NA	NA	NA	NA	NA	NA
1963	NA	NA	NA	NA	NA	NA
1964	NA	NA	NA	NA	NA	NA
1965	NA	NA	NA	NA	NA	NA
1966	NA	NA	NA	NA	NA	NA
1967	NA	NA	NA	NA	NA	NA
1968	27	10.3	[°] 8.8	5.4	3.4	25.9
1969	14	19.0	18.9	11.3	5.5	49.6
1970	40	10.5	7.3	8.7	2.3	35.8
1971	13	15.5	13.1	7.5	3.6	28.
1972	18	14.1	11.7	7.2	4.5	30.
1973	41	24.4		24.1	5.0	
1974	124	15.9	14.5	10.3	1.7	54.3
1975	131	16.2	11.9	13.5	1.9	81.0
1976	110	13.2	10.4	10.6	2.0	
1977	55		12.7	-		65.4
1978	554		29.4		1.1	
1979	629		27.4		•••	
1980				8.5	0.9	- • •
1981					1.2	
1982				10.1	0.1	
1983		NA	NA	NA	NA	NA
1984	NA	NA	NA	NA	NA	NA

* SEASON 1 JANUARY - MARCH

* SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER

* SEASON 4 OCTOBER - DECEMBER

1

 \sim

1

~

-

1

.

TABLE 22

ANNUAL AND SEASONAL DATA BASE INVENTORY CORRECTED CHLOROPHYLL A (ug/1) - WESTERN BASIN

	-	
,	× .	

<u></u>

୍

YEAR	N	MEAN	MEDIAN	ST.DEV.	LOW	HIGH
	0046		14 0	17.0	2 1	100 /
ALL DATA	2246	20.3	14.8	17.9	-3.1	120.2
SEASON 1*	162	8.2	5.0	8.4	0.4	38.8
SEASON 2*	668	13.4	8.9	13.0	0.2	93.0
SEASON 3*	910	26.9	21.3	20.2	0.1	120.3
SEASON 4*	506	21.2	19.2	15.7	-3.1	80.0
1947	NA	NA	NA	NA	NA	NA
1963	NA	NA	NA	NA	NA	NA
1964	NA	NA	NA	NA	NA	NA
1965	NA	NA	NA	NA	NA	NA
1966	NA	NA	NA	NA	NA	NA
1967	NA	NA	NA	NA	NA	NA
1968	NA	NA	NA	NA	NA	- NA
1969	NA	NA	NA	NA	NA	NA
1970	NA	• NA	NA	NA	NA	NA
1971	NA	NA	NA	NA	NA	NA
1972	18	12.9	11.2	6.5	4.1	27.0
1973	130	18.4	12.6	16.9	0.0	102.3
1974	120	14.8	13.5	9.8	2.1	50.0
1975	131	14.8	10.6	13.4	1.2	78.9
1976	110	11.7	8.9	10.0	1.1	60.9
1977	55	14.3	10.2	13.2	2.3	64.2
1978	553	26.3	24.8	16.0	-3.1	87.2
1979	629	29.4	25.4	21.5	0.4	120.2
1980	192	9.4	7.2	8.0	0.7	52.0
1981	211	6.9		6.4	0.8	38.7
1982			4.8	9.4	0.1	33.3
1983		NA	NA	NA	NA	NA
1984	NA	NA	NA	NA	NA	NA

*	SEASON	1	JANUARY	- MARCH
*	SEASON	2	ADDTI -	MAV

- * SEASON 2 APRIL MAY * SEASON 3 JUNE SEPTEMBER * SEASON 4 OCTOBER DECEMBER

<u>a</u>

~

ANNUAL AND SEASONAL DATA BASE INVENTORY PHEOPHYTIN (ug/1) - WESTERN BASIN

	-	
×	×4)	

ത

YEA	}	N 	MEAN	MEDIAN	ST.DEV.	LOW	HIGH
	DATA	2052	4.0	2.0	4.0	0.0	20.4
ALL	DATA	2053	4.0	2.9	4.0	0.0	39.4
SEA	SON 1*	158	2.4	1.6	2.3	0.1	12.6
SEA	SON 2*	581	3.6	2.6	3.6	0.0	39.4
SEA	SON 3*	833	4.3	3.4	4.2	0.0	34.0
SEAS	SON 4*	481	4.5	3.0	4.3	0.0	29.2
194	7	NA	NA	NA	NA	NA	NA
196	3	NA	NA	NA	NA	NA	NA
1964		NA	NA	NA	NA	NA	NA
196	5	NA	NA	NA	NA	NA	NA
196	5	NA	NA	NA	NA	NA	NA
196	7	NA	NA	NA	NA	NA	NA
196	8	NA	NA	NA	NA	NA	· NA
196	9	NA	NA	NA	NA	NA	NA
197	0	NA	NA	NA	NA	NA	NA
197	1	NA	NA	NA	NA	NA	NA
197	2	NA	NA	NA	NA	NA	NA
197	3	NA	NA	NA	NA	NA	NA
197		116	2.1	1.5	2.2	0.0	13.8
197		130	2.3	2.0	1.8	0.0	13.1
197		77	3.6	2.9	2.4	0.1	9.9
197	7	55	2.8	1.7	3.0	0.2	13.5
197		556	6.2	5.2	4.8	0.0	39.4
1979		627	3.8	3.0	3.8	0.0	29.2
198		190	2.1	1.9	1.5	0.2	7.1
198		205	3.4	2.1	4.3	0.1	34.0
198		97	3.6	2.6	2.9	0.0	17.3
198		NA	NA	NA	NA	NA	NA
1984	4	NA	NA	NA	NA	NA	NA

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER * SEASON 4 OCTOBER - DECEMBER

 \wedge

P

1

<u>M</u>

<u></u>

<u></u>

PRELIMINARY CLUSTER ANALYSIS * CHLORIDE (MG/L) - WESTERN BASIN (N = 2 THROUGH 20)

NUMBER		LARGEST		MAX. DIST.	
OF CLUSTERS	N 	CLUSTER	MEAN	BETWEEN CLUSTERS	ST. DEV.
2	3166	2	17.0	14.2	4.2
3	1941	3	14.3	10.6	2.8
4	2335	4	19.0	7.5	2.9
5	1992	4	16.8	4.5	2.2
6	1690	4	15.1	3.7	2.2
5 6 7	1713	1	18.8	3.7	1.9
8	1605	4	17.3	2.9	1.7
8 9	1307	4	16.1	2.6	1.4
10	1248	1	19.0	2.5	1.4
11	1329	6	17.9	2.3	1.4
12	1169	12	17.5	2.3	1.2
13	1156	8	17.4	2.1	1.2
14	1124	7	17.3	2.0	1.1
15	904	7	19.4	1.6	1.0
16	929	8	17.0	1.7	0.9
17	782	8	16.0	1.5	0.8
18	853	8	17.1	1.4	0.8
19	855	8	16.9	1.4	0.8
20	741	8	16.1	1.3	0.7

* = DATA FROM THE MOST POPULATED CLUSTER

CHLORIDE FIVE CLUSTERS

	N 	ME AN	ST. DEV.	MEDIAN	LOW	HIGH
1	7	47.6	3.2	46.0	45.0	53.2
2	84	36.6	3.3	36.0	32.3	44.0
3	898	24.1	2.9	23.2	20.9	32.0
4	1992	16.8	2.2	17.0	12.4	20.8
5	515	10.4	1.5	10.8	3.2	12.3

TABLE 26

•

.

CHLORIDE SIX CLUSTERS

CLUSTE	R N	MEAN	ST. DEV.	MEDIAN	LOW	HIGH
1	1280	21.4	2.1	21.0	18.1	26.4
2	48	39.5	2.7	38.8	36.0	45.1
3	227	29.6	2.5	29.0	26.5	35.7
4	1690	15.1	2.2	15.5 .	10.8	18.0
5	4	49.5	3.0	49.3	46.0	53.2
6	247	9.2	1.3	9.3	3.2	10.7

<u>^</u>

♠ .

 $\widehat{}$

.

<u>_</u>.

A

<u>_</u>

~

 \bigcirc

. A

 \land

<u>_</u>

A

<u>,</u>

٠

CHLORIDE SEVEN CLUSTERS

CLUSTE	RN	MEAN	ST. DEV.	MEDIAN	LOW	HIGH
1	1713	18.8	1.9	18.8	15.9	22.8
2	3	50.6	2.4	50.0	48.6	53.2
3	511	25.5	2.2	25.0	22.9	31.0
4	122	8.2	1.2	8.8	3.2	9.2
5	18	42.8	1.8	42.5	40.0	46.0
6	97	34.5	2.5	34.0	31.4	39.4
7	1032	13.0	1.8	13.0	9.3	15.8

TABLE 28

,

CHLORIDE EIGHT CLUSTERS

CLUSTER	N	MEAN	ST. DEV.	MEDIAN	LOW	HIGH
1	38	6.9	1.4	7.3	3.2	8.0
2	788	22.8	1.7	22.4	20.1	26.7
3	3	50.6	2.4	50.0	48.6	53.2
4	1605	17.4	1.7	17.2	14.2	20.0
5	44	37.1	1.7	37.2	34.2	40.0
6	202	29.6	2.2	29.0	26.9	34.0
7	800	11.8	1.6	12.0	8.1	14.1
8	16	43.1	1.6	42.7	41.0	46.0

1

 $\widehat{}$

 \sim

 \sim

1

1 m

P

3

3

1

CHLORIDE NINE CLUSTERS

CLUSTE	R N	MEAN	ST. DEV.	MEDIAN	LOW	HIGH
1	13	43.6	1.4	44.0	42.0	46.0
2	23	6.2	1.4	6.8	3.2	7.6
3	1029	20.7	1.4	20.5	18.4	23.6
4	1307	16.0	1.4	16.0	13.2	18.3
5	3	50.0	2.4	50.0	48.6	53.2
6	98	32.1	1.5	32.0	29.5	35.5
7	362	25.8	1.6	25.5	23.7	29.1
8	37	38.1	1.5	38.0	35.7	41.4
9	624	11.1	1.4	11.1	7.8	13.1

TABLE 30

•

CHLORIDE TEN CLUSTERS

CLUSTE	R N	MEAN	ST. DEV.	MEDIAN	LOW	HIGH
1	1248	19.0	1.4	19.0	16.9	21.8
2	3	50.6	2.4	50.0	48.6	53.2
3	71	33.1	1.4	33.0	31.4	36.0
4	948	14.8	1.3	15.0	12.3	16.8
5	31	38.5	1.2	38.0	37.0	41.4
6	13	43.6	1.4	44.0	42.0	46.0
7	147	28.5	1.3	28.0	26.9	31.0
8	20	6.0	1.4	6.6	3.2	7.3
9	479	10.5	1.2	10.8	7.4	12.2
10	536	23.6	1.4	23.3	21.9	26.7

CLUSTERNMEANST. DEV.MEDIANLOWHIGH1744.70.845.044.046.023319.81.110.06.811.1364222.21.222.020.224.741840.61.440.539.042.7525526.61.426.524.929.56132917.91.418.015.620.17115.11.25.13.26.7877813.61.213.811.215.593136.91.237.035.038.610350.62.450.048.653.2119131.91.332.029.634.2

CHLORIDE ELEVEN CLUSTERS

TABLE 32

CHLORIDE TWELVE CLUSTERS

CLUSTE	R · N	MEAN	ST. DEV.	MEDIAN	LOW	HIGH
1	12	42.4	1.1	42.2	41.0	44.0
2	28	38.2	0.9	38.0	37.0	40.0
3	331	9.8	1.1	10.0	6.8	11.1
4	11	5.1	1.2	5.1	3.2	6.7
5	271	26.4	1.4	26.0	24.4	29.0
6	817	21.6	1.3	21.4	20.0	24.3
7	24	34.8	0.8	34.6	33.7	36.0
8	2	51.6	2.3	51.6	50.0	53.2
9	744	13.5	1.2	13.6	11.2	15.4
10	5	45.9	1.5	45.1	45.0	48.6
11	82	31.5	1.1	31.7	29.1	33.0
12	1169	17.5	1.2	17.5	15.5	19.9

<u>
</u>

~

P

A

P

3

1

1

 $\widehat{}$

1

3

A

PRELIMINARY CLUSTER ANALYSIS * CONDUCTIVITY (UMHOS/CM) AT 25 °C - WESTERN BASIN (N = 2 THROUGH 20)

NUMBER OF CLUSTERS	N	LARGEST CLUSTER	MEAN	MAX. DIST. BETWEEN CLUSTERS	ST. DEV.
2	5445	2	268.3	151.5	32.2
2 3	2959	1	245.7	122.1	16.3
4	5004	4	271.2	96.5	28.0
5	5049	3	263.6	56.4	24.2
6	4180	6	255.5	55.6	18.7
7	3104	2	247.5	50.8	15.2
8	2853	8	281.4	43.2	15.9
9	3240	8	269.1	31.2	13.6
10	3328	6	271.3	34.3	14.5
11	3070	11	264.8	22.5	12.3
12	2528	7	253.9	19.6	10.6
13	2214	2	249.7	17.2	9.7
14	2183	13	259.5	15.9	8.8
15	2054	8 .	261.8	14.1	8.1
16	1964	8	250.7	15.0	8.5
17	1953	17	274.8	14.5	8.1
18	1975	18	251.6	15.2	8.5
19	1978	19	267.9	13.5	7.7
20	1657	18	255.2	11.8	6.8

* = DATA FROM THE MOST POPULATED CLUSTER

PRELIMINARY CLUSTER ANALYSIS CHLORIDE (MG/L) - WESTERN BASIN SEASONAL BREAKDOWN

CLUSTER	SEASON	N	MEAN	ST. DEV.	MEDIAN	LOW	HIGH
							•
1	ALL	168	32.47	2.98	32.0	29.0	39.2
2 3	ALL	1338	22.06	2.47	21.5	19.0	28.5
	ALL	20	42.91	2.30	42.45	39.4	48.6
4 5	ALL	1711	15.48	2.05	16.00	11.3 3.2	18.9
5	ALL	350	9.67	1.36	10.00	3.2	11.2
1	1	8	30.80	1.02	30.95	29.4	32.2
1	1 2 3	88	32.82	3.18	32.00	29.0	39.2
1		46	32.10	2.86	31.25	29.0	39.0
1	4	26	32.47	2.75	31.85	29.0	39.0
2	1	51	22.77	2,56	23.00	19.0	28.5
2	2 3	765	21.95	2.40	21.50	19.0	28.5
2 2 2 2	3	354	22.22	2.62	22.00	19.0	28.5
2	4.	168	21.96	2.41	21.00	19.0	28.5
3	1	ND	ND	ND	ND	ND	NE
3	2	8	44.13	2.68	44.50	40.0	48.6
3 3 3 3	2 3	9	41.68	1.42	42.00	39.4	44.0
3	4	3	43.33	2.08	44.00	41.0	45.0
4	1	31	14.54	2.27	13.40	11.9	18.9
4	2	634	16.02	1.98	16.50	11.5	18.9
4	2 3	610	15.38	1.93	15.70	11.3	18.9
4	4	436	14.90	2.08	14.80	11.3	18.9
5	1	3	7.87	0.29	7.70	7.7	8.2
5	1 2	121	9.33	1.68	10.00	3.2	11.0
5	3	140	10.11	0.90	10.50	7.9	11.2
5	4	86	9.50	1.27	9.55	6.3	11.

.

1

r A

 \sim

3

-

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL - MAY * SEASON 3 JUNE - SEPTEMBER * SEASON 4 OCTOBER - DECEMBER

PRELIMINARY CLUSTER ANALYSIS CONDUCTIVITY (UMHOS/CM) AT 25 °C - WESTERN BASIN SEASONAL BREAKDOWN

HIG	LOW	MEDIAN	ST. DEV.	MEAN	N	SEASON	CLUSTER
587.00	428.00	475.00	47.66	487.78	150	ALL	1
175.00	34.00	138.00	25.64	137.08	77	ALL	1 2 3 4
293.48	178.00	259.00	20.59	257.00	4526	ALL	3
427.00	293.71 595.00	315.00 640.00	32.09 28.76	326.69 638.99	1101 34	ALL ALL	4 5
/00.00	595.00	040.00	20.70	030.99	54	ALL	5
507.00	477.00	480.00	16.52	488.00	3	1	1
587.00	428.40	480.83	48.92	493.83	102	1 2 3	1
580.00	430.00	468.18	49.90	428.76	31	3	1
473.00	431.46	452.00	11.71	454.81	14	4	1
· 175.00	34.00	138.00	27.03	135.82	65	1	2
148.00	118.00	140.00	12.22	136.13	8	2	2
ND	ND	ND	ND	ND	ND	3	2 2 2 2
162.00	157.00	159.50	2.89	159.90	4	4	2
290.00	178.00	240.50	34.05	240.08	76	1	3
293.00	207.00	266.00	18.16	263.22	1512	2. 3	3 3 3
293.48	190.00	256.00	19.82	255.57	2082	3	3
293.00	178.00	251.77	21.63	251.03	856	4	3
420.00	300.00	330.00	31.53	338.74	34	1	4
427.00	294.00	318.00	34.15	330.12	528	1 2	4
426.00	294.00	311.10	25.34	319.31	401	3	4
423.51	293.71	317.00	37.39	332.08	138	4	4
ND	ND	ND	ND	ND	ND	1	5
700.00	595.00	640.00	26.96	637.13	27	2	5
690.00	600.00	643.00	36.39	646.14	7	1 2 3 4	5 5 5 5
ND	ND	ND	ND	ND	ND	4	5

TABLE 35

* SEASON 1 JANUARY - MARCH * SEASON 2 APRIL MAY

* SEASON 3 JUNE - SEPTEMBER

.

* SEASON 4 OCTOBER - DECEMBER

M

1

3

A

1

M

 $\widehat{}$

()

PAGE 65

• ••

.

TABLE 36

	USING STANDARDIZED	TER STATISTICS	CHLORIDE DATA
CLUSTER	CUBIC CLUSTERING CRITERION	OVERALL ESTIMATED R2	VARIANCE RATIO
5	- 61.1907	0.9601	5.21
6	- 66.7596	0.9723	6.70
7	- 71.2620	0.9797	8.31
8	- 71.6792	0.9845	10.94
8 9	- 67.0480	0.9877	15.76
10	- 69.1717	0.9901	18.60
11	- 74.0589	0.9918	20.07
12	- 77.5909	0.9931	22.01
13	- 79.8497	0.9941	24.56
14	- 81.5340	0.9950	27.45

1

 \sim

1

<u></u>

A

 $\widehat{}$

M

1

1

()

* Variance Ratio = Between-Cluster Variance/Within-Cluster Variance

<u></u>

1

5

190

100

3

1

A

-

1

.

PAGE 66

.

FASTCLUS PROCEDURE

BEPLACE=FULL BADIUS=0 BAICLUSTEES=7 BAXITEE=1

INITIAL SEEDS

CIUSTER	COND
1	210-000
2	290.000
3	118.000
4	520.000
5	440-000
e	600-000
7	366 - 71 0

CLUSTER SUMMARY

CLUSTER NUEBER	FREQUENCY	RES STD DEVIATION	MAXINUM DISTANCE FROM SEED TO OBSERVATION	N PAREST Clusteb	CENTROID DISTANCE
1	2759	11.4811	37.6732		40.2640
2	3243	13,4189	39.3429	ī	40.2640
3	88	14-2250	36-2727	i	66.2241
4	40	23.3123	39.0719	6	67.7224
5	162	22.2926	40-0905	4	72.8842
6	23	14.7288	26-8541	4	67.7224
7	435	19.3962	39.3356	2	65.8156

649 OBSERVATION (S) WERE ORITTED DUE TO RISSING VALUES

STATISTICS FOR VARIABLES

VARIABLE	TOTAL STD	VITHIN STD	R-SQUARED	B5C/ (1-R5Q)
COND	49 - 28 2990	13.528955	0.924708	12.281644
OVER-ALL	49 - 28 2990	13.528955	0.924708	12.281644

PSEUDO F STATISTIC = 13802.52 Appeolimate exfected over-all R-squared = 0.97964 Cupic clustering critericx = -77.789

SAS

FASTCLUS PROCEDURE

CLOSTER BEANS

C1USTER COND

237,004
277.318
170.830
507.600
434.715
575.322
343.133

CLUSTER STANDARD DEVIATIONS

CLUSTER	COND
1	11.4811
2	13_4189
3	14.2250
4	23.3123
5	22-2926
6	14.7288
7	19.3962

SIS

FASTCLUS PROCEDURE

BEPLACE=FULL PADIUS=C RAXCLUSTEES=7 RAIITER=1

INITIAL SEEDS

CIUSTEE	CI
1	19,0000
2	35.0000
3	27.0000
4	3.2000
5	42.7000
£	50.0000
7	11.0000

CLUSTER SUBRARY

CLUSTER	FREQUESCY	ERS STD	RAILHON DISTANCE FEOR	N EAREST	CENTECID -
KURBER		EEVIATION	SEED TO OUSERVATICH	Cluster	Distanci
1	940	1.9522	3.5863	7	5.936e
2	63	2.0383	3.9623	3	7.6321
3	285	1.9743	3.8746	1	6.6085
4	26	1.5662	3.2111	7	5.4970
5	25	2.6368	4.0056	6	7.6120
6	3	2.0296	3.3000	5	7.6120
7	524	1.8276	3.3103	5	5.4970

1564 CBSERVATICE (S) WERE ORITTED DUE TO EISSING VALUES

STATISTICS FOR VARIABLES

VALIAFLE	TOTAL STD	WITHIN STD	R-SCUARED	RSC/(1-RSC)
CL OVER-ALL	6.0771711 6.0771711	1.9302883 . 1.9302883	0.8994361 0.8994361	8.9439289 8.9439289
	APPEOXIMATE EI	PSEUDO F S Ifected over-All R Cupic Clustering C	STATISTIC = 2771.13 R-SQUABED = 0.97978 CBITERION = -50.148	

SAS

FASTCLUS PROCEDURE

CLOSTER BEARS

CIUSTER	Cl

1	18.4876
2	32.7286
3	25.0965
4	7.0538
5	40.588C
£	46.2000
7	12.5500

CLOSTER STARDARD DEVIATIONS

CLUSTER	CL
1	1.95224
:	2.03830
3	1.97425
4	1.56620
5	2-63681
6	2.02978
7	1.82763
	2-63681 2-02978

 \bigcirc

 \bigcirc

1

1

M

A

<u>م</u> ۲

A

P

۲

•

ŝ

A

.

ŝ

~

Table 39. Variable Cluster Statistics for Turbidity

SIS

FASTCLUS PROCEDURE

REPLACE = FGLL MAICLUSTERS = 7 MAXITER = 1

SEED REPIACERENTS: FIRST LEVEL = 7 SECOND LEVEL = 36

INITIAL SEEDS

CLUSTER TURB

1 2 3 4 5	16.7000 65.0000 82.0000 49.0000
5	100-0000
6	0.4000
7	33.0000

CLUSTER SUBMARY

CLUSTER RERBERS BAS ST DEV HAI DISTANCE FROM SEED

1	1224	3-565852	7.833032
2	50	4.24341	8-153846
3	24	3.988207	6.857143
4	110	4.601017	8.095918
5	12	3. 94 277 2	8.444444
6	3482	2-239195	5.039679
7	385	4.390121	8.017423

STATISTICS FOR VARIABLES

VARIABLE	TOTAL STD	WITHIN STD	B-SQUAREC	VAR RATIO
TUEB	12.2219214	2-8910794	0.9441082	16.8917227
OVER-ALL	12-2219214	2-8910794	0.9441082	16.8917227

AFPROXIMATE EXPECTED OVER-ALL R-SQUARED = 0.9797 CUEIC CLUSTERING CRITERION =-53.1974 WARBING: THESE VALUES ARE INVALID IF VARIABLES ARE CORRELATED

CLUSTER REARS

CLUSTER TURB

1	14.25948
2	62.44000
3	76.91667
4	45.70000
5	95.50000
6	4.26066
7	28.80831

,

Ŀ,

S≱S

FASTCLUS PROCEDURE

CLUSTER STANDARD DEVIATIONS

CLUSTER TUBB

1	3-565852
2	4.243410
3	3.988207
4	4-601017
5	3.942772
6	2-239195
7	4-390121

 (\mathbb{A})

 \sim

A

1

M

∕ゐ

1

۰ 🔊

1

1

SAS

FASTCLUS PROCEDUBE

REPLACE=FULL FADIUS=0 RAICIDSTEES=7 BAJITEB=1

IBITIAL SEEDS

CIDSTER	155
1	44.190
2	22.190
3	0.100
4	139.640
5	67.000
6	89.100
7	112.000

CLUSTER SUBMART

CLUSTER Number	FEEQUENCY	RES STD DEVIATION	MAXIBUM DISTANCE FROM SEED TO OBSEBUATION	X EA SE ST Clust er	CENTROID - Distance
1	1 20	6.0321	11.3636	2	19.8809
2	387	4.7683	11.0169	3	14.1159
3	673	3-2965	6-7975	ž	14.1159
4	3	7.9628	8.3900	7	21.6278
5	37	6-3863	10.9911	6	23.7636
6	11	5.3916	10.4336	7	20.1619
7	9	4_9464	9.4990	× 6	20.1619

6159 CESERVATION (S) WERE OMITTED DUE TO MISSING VALUES

STATISTICS FOR VARIABLES

VASIABLE	TOTAL STD	WITHIN STD	8-SQUABED	ESC/ (1-RSQ)
TSS Over-All	18.386705 18.386705	4 •270894 4 •270894	0.946307 0.946307	17.624240 17.624240
		PSEUDO F STA CTED OVEB-ALL.B-S IC Clustering Cri	QUARED = 0.97987	r i

SAS

FASTCLUS PROCEDURE

CLUSTER MEANS

CIUSTER	TSS
1	41.166
2	21.285
3	7.169
4	130.523
5	64.970
£	88.734
7	108.896

CLUSTER STANDARD DEVIATIONS

CIUSTE B	755
1	6.03214
2	4.76831
3	3-29653
4	7.96282
5	6.38628
6	5.39156
ĩ	4.94638

515

PAGE 70

FASTCLUS PLOCEDURE

REFLACE=FULL PADIUS=0 MAXC1USTEBS=7 MAXITER=1

INITIAL SEEDS

CIUSTER	TP
1	0.154500
2	0.390000
3	0.003600
4	0-481200
5	0.079000
£	0.310000
7	0.230000

•

CLUSTER SURFARY

CLUSTER AUZBER	FREQUENCY	LES STD CEVIATION	BAILBUB DISTANCE FROM SEED TO OBSERVATION	BEAREST Cluster	CENTECID Distance '
1	335	6.0199	6.0368	<u>-</u>	0.0639
2	12	0.0238	0.0481	4	0.0708
3	1367	C-0103	0-0241	5	0.0490
4	0	0.0163	0.0359	2	0.0708
5	949	0.0123	0.0366	-	0.0490
6	22	0.0215	0.0411		0_0893
7	94	0.0199	0-0358	1	0.0680

643 OBSERVATION (S) WERE OMITTED DUE TO MISSING VALUES

STATISTICS FOR VARIABLES

VARIABLE	TOTAL STD	WITHIN STD	8-SQ	UARED	RS(/(1-85()
TP OVER-ALL	0 - 060790 0 - 060790	0 • 01 5 2 9 3 0 • 0 1 5 2 9 3		36848 36848	14.834930 14.834930
	APPROXIMATE EXFECTED	OVER-ALL	STATISTIC = R-SQUAREE = CBITERICS =	0.97972	

SXS

PASTCLUS PROCEDURE

CLUSTER MEANS

CIUSTER	TP	
	0.139736	
7	0.395100	
3	0.026776	
4	0.465850	
5	0.075811 0.297082	
7	0.207747	

CLUSTER STANDARD DEVIATIONS

CLOSTER	TF
1	0.019933
2	0.023791
3	0.010322
4	0.016272
5	0.018290
£	0.021538
7	0.019922

 $\langle \! \cap \! \rangle$

0

٦٢

3

•

Table 42. Single Variable Cluster Statistics for Total Dissolved Filtered Phosphorus

SAS

FASTCLUS PROCEDURE

REFLACE=FULL PADIUS=0 MAICLUSTESS=7 MAILTEL=1

INITIAL SEEDS

CLUSTER	TDFP
3	0.087900
2	0.041600
3	0 - 21 2000
4	0.127100
5	0.295600
6	0.170000
7	0.001100

CLUSTER SUSMARY

CLESTER	PBEQUENCY	LES STL	MAXIBUM DISTANCE FROM	N EABEST	CENTROID
NURSER		Ceviation	SEED TO OBSERVATION	Cluster	Distance
1 2 3 4 5 6 7	176 482 6 37 2 16 1711	0.0110 .0089493 .0064871 C.0109 0.0158 0.0112 .0056048	0.0217 0.0200 .0085333 0.0194 0.0112 0.0195 0.0195 0.0141	2 7 6 3 · 3 2	0 - 0 35 2 0 - 0 26 9 0 - 0 37 3 0 - 0 46 3 0 - 0 80 6 0 - 0 37 3 0 - 0 26 9

1000 OBSERVATICE (S) WERE ORITTED DUE 10 RISSING VALUES

STATISTICS FOR VARIABLES

VARIAEL2	TOTAL STD	WITHIN STD	B-SQUARED	RSC/ (1-RSQ)
TDFP Over-All	0-028190 0-028190	0.007043 0.007043	U-937733 0-937733	15.059997 15.059997
		PSEUDO F STAT	TISTIC = 6081.7;	3

APPROXIMATE EXFECTED OVER-ALL R-SODAREE = 0.97973 CUPIC CLUSTEBING CRITERICN = -40.051

51 S

FASTCLUS PROCEDURE

CLUSTER BEANS

CLUSTER	TDFF
1	0.072826
2	0.037589
3	0-203833
4	0.120224
5	0.284450
£	0.166562
7	0.010669

CLUSTER STANDARD DEVIATIONS

CIUSTE B	TDFP
1	0.011048
2	0.008949
3	0.006487
4	0.010885
5	0-015768
t	0.011154
7	0.005605

~

1

1

<u>~</u> "

ŝ

SAS

 $\widehat{}$

A

٦

FASTCLUS PROCEDURE

REFLACE=FULL RADIUS=0 MAXCLUSTERS=7 MAXITEL=1

INITIAL SEEDS

CLUSTER	NO2NO3
,	2.4500
•	2.4300
2	11.3400
3	5.1200
4	0.0000
5	45.0000
6	7.7000
7	53.0000

CLUSTER SUMMARY

CLUSTER NUMBER FREQUENCY	RMS STD DEVIATION	MAXIMUM CISTANCE FROM SEED TO OBSERVATION	NEAREST CLUSTER	CENTROID DISTANCE
1 79	0.6219	1.4550	ц	1.5461
2 3	0.8834	1.0200	6	2.95è£
3 25	6.7442	1.4255	6	2.6966
4 810	0.2558	0.8557	1	1.5461
5 2	0	0	7	8.0000
6 14	0.8139	1.3015	3	2.6966
7 1	•	0	* 5	9-0000

2486 CESERVATION(S) WERE CMITTED DUE TO MISSING VALUES

STATISTICS FOR VARIABLES

VARIABLE	TOTAL STD	ITHIN STD	R-SQUARED	RSQ/ (1-8SQ)
NO 2NO 3 OVEE-ALL	2.967459 2.967459	0.338420 0.338420	0.987077 0.967077	76.360263 76.380263
			STATISTIC = 11928.05	

AFFRCYIMATE EXFECTED OVER-ALL R-SQUARED = 0.97996 CUBIC CLUSTERING CRITERION = 9.757

SAS

FASTCLUS PROCEDURE

CLUSTER MEANS

CLUSTER	NO2NO3
1	1.8092
2	10.3200
3	4.6628
4	0.2631
5	45.0000
6	7.3614
7	53.0000

CLUSTER STANDARD DEVIATIONS

CLUSTER	NO2NO3
********	***
1	0-621908
2	0.883402
3	0.744180
4	0.255763
5	0.000000
6	0.818910
7	•

PAGE 73

SAS

 \frown

 \sim

<u>_</u>

FASTCLUS PROCEDURE

REPLACE=FULL RADIUS=0 HAXCLUSTERS=7 HAXIFER=1

INITIAL SEEDS

CLUSTER	CHL
1	85.660
2	107.400
3	63.380
4	0.110
5	128.960
6	42.720
7	21.390

CLUSTER SUMMARY

CLUSTER NUMBER	FREQUENCI	RMS SID Deviation	NAXINUM DISTANCE FROM SEED TO OBSERVATION	NEAREST Cluster	CENTRDID Distance/
1	30	4.5838	9.2170	3	20.6351
2	8	5.9612	11.4725	ĩ	21.1991
3	115	6.0459	10.4522	6	19.0145
4	407	3.2220	5.9203	ž	13.9344
5	1	•	0	2	28.0012
6	280	5.5937	10.7709	3	19.0145
7	336	5.1355	10.7909	ų	13.9344
				*	

STATISTICS FOR VARIABLES

VARIABLE	TOTAL STD	VITHIN STD	R-SJUARED	R33/(1-R53)
CHL OVER-ALL	20.778013 20.778013	4.786517 4.786517	0.947203 0.947203	17.940448 17.940448
		PSEUDO F STA	TISTIC = 3498.3	19

APPROXIMATE EXPECTED SYER-ALL R-SQUARED = 0.97939 CUBIC CLUSTERING CRITERION = -23.959

.

SAS

FASICLUS PROCEDURE

CLUSTER HEANS

CHL
79.760 100.959
59.065
6.877
128.960
40.050
20.811

CLUSTER STANDARD DEVIATIONS

CLUSTER	CHL
1	4.58085
2	5.99118
3	6.04592
4	3.22197
5	•
6	5.59370
7	5.13550

TABLE 45

	CLUSTER STATISTICS USING STANDARDIZED LOG-TRANSFORMED CHLORIDE DATA.			
CLUSTER	CUBIC CLUSTERING CRITERION	OVERALL ESTIMATED R2	VARIANCE ³ RATIO	
5	- 61.1907	0.9601	5.21	
6	- 66.7596	0.9723	6.70	
7	- 71.2620	0.9797	8.31	
8 9	- 71.6792	0.9845	10.94	
9	- 69.5644	0.9877	14.79	
10	- 67.6646	0.9901	19.32	
11	- 77.1008	0.9918	18.60	
12	- 80.2753	0.9931	20.60	
13	- 74.0496	0.9941	28.34	
14	- 77.1559	0.9950	30.58	

1

M

 \bigcirc

M

A

M

1

* Variance Ratio = Between-Cluster Variance/Within-Cluster Variance

-

.

TABLE 46

.

. . .

CLUSTER	CUBIC CLUSTERING CRITERION	OVERALL ESTIMATED R2	VARIANCE RATIO
4	37.537	0.3727	1.6711
5	35.494	0.4548	2.1340
6	29.507	0.5255	2.3866
7	28.518	0.5566	2.6863
8	27.080	0.5824	2.9174
9	28.226	0.6041	3.3176
10	29.546	0.6228	3.7450
11	29.066	0.6392	4.0038
12	31.097	0.6537	4.5283
13	30.225	0.6668	4.7266
14	27.911	0.6786	4.7220

· ·

1

 \sim

1

<u></u>

.

TABLE 47

	SING STANDARDIZED LOG-TR		TARIADLE DATA
CLUSTER	CUBIC CLUSTERING CRITERION	OVERALL ESTIMATED R2	VARIANCE RATIO
4	44.903	0.3727	1.9559
5	35.613	0.4548	2.1426
6	32.651	0.5255	2.5621
7	33.997	0.5567	3.0510
8	33.383	0.5824	3.3930
9	35.758	0.6041	3.9817
10	36.332	0.6228	4.4238
11	32.080	0.6392	2.0289
12	31.794	0.6537	4.6093
13	34.603	0.6667	5.2886
14	33.475	0.6786	5.4610

M

1

A

1

 \wedge

P

* Variance Ratio = Between-Cluster Variance/Within-Cluster Variance

,

TABLE 48

COMPARISON OF THE INDIVIDUAL MULTIPLE CLUSTER MEAN CONCENTRATIONS WITH COMPUTED MEANS AND MEDIANS FOR EACH VARIABLE

VARIABLE		MULTIPLE CLUSTER NUMBER													
	1	2				6									
TURB	5.5	26.4	5.9	13.4	5.5	17.2	3.1	8.8	4.5						
ТР	61.1	159.0	20.3	81.3	40.8	100.0	31.3	65.8	46.3						
TFP	18.9	51.9	5.7	46.3	13.8	22.8	9.5	25.8	14.6						
CHL	26.0	46.4	9.1	7.5	10.1	38.1	9.3	20.3	14.8						
CL	17.6	28.9	12.4	19.0	12.7	21.4	18.7	18.3	18.0						

TFP - TOTAL FILTERED PHOSPHORUS (UG/L)

CHL - UNCORRECTED CHLOROPHYLL CL - CHLORIDE

.

M

<u></u>

 \bigcirc

 \sim

1

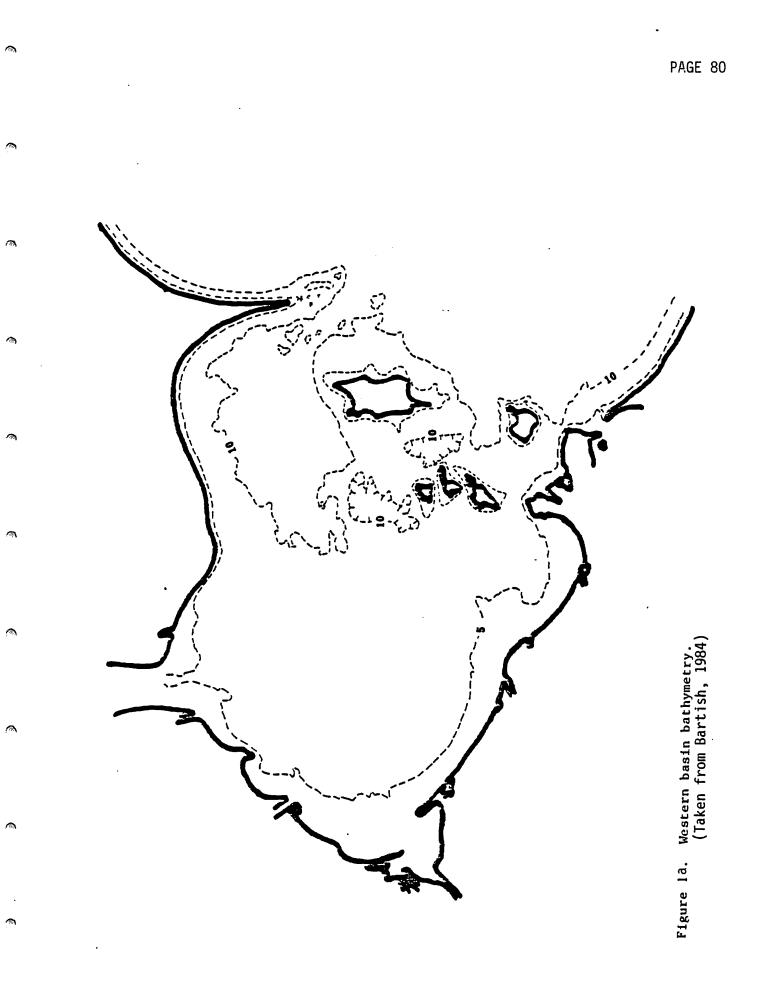
3

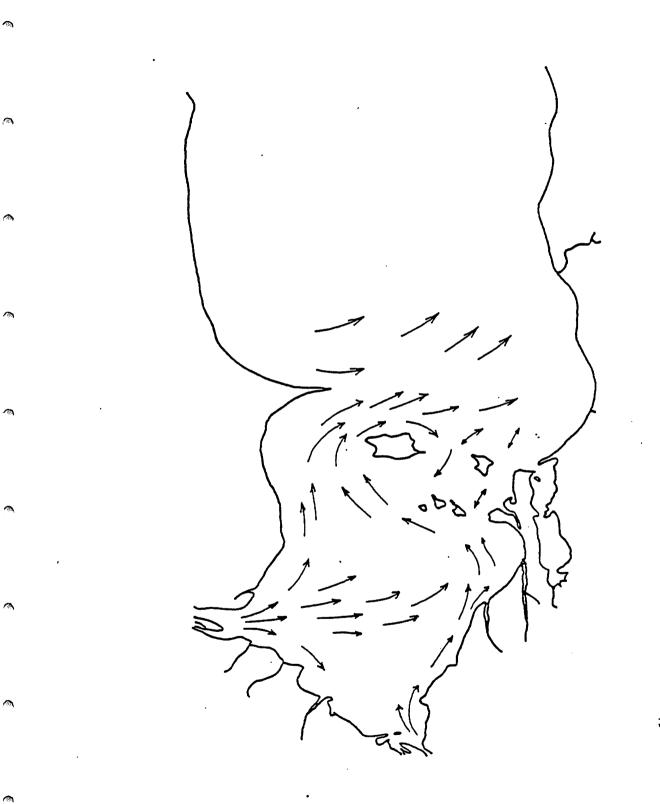
<u>M</u>

1

1

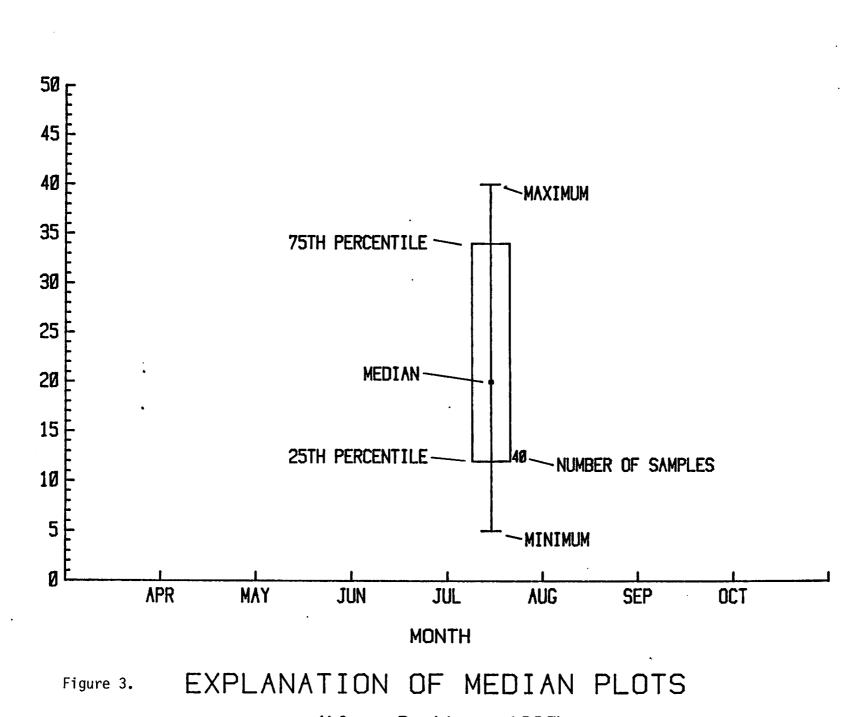
Clustering of the Homogeneous Zone Cluster to Determine Number of Sampling Stations


1


1

GRID#		82•1 82•8 83•1	1933 500	3	41 • 41 • 41 •	816 816	3 7 7 7	1		0.0	584	27	3 - 97	h	3• 50 2• 00	A NET THE RAP OF		0 .		
5		82.9 83-3 82.9 82.9	1933	3	41.	85C 916 983 916	3	1 1 1	ر روز میش معرف مده	0.7	171	6	3 41	4		15.00	18.0			
8 9 10		83.0 83.0 82.8	1167	7.	$\frac{41}{51}$	950 950 983 716	0	<u> </u>		8.0	832 221 625 862	6	2 45	0 31	<u>e 00</u> 0 00 5 55	10.50 13.30 12.50	16.5	<u> </u>		
12		83.2	2500	<u> </u>	41.	783	3			1.0	063	3	•	·	•		18.5	8.17)	
13 		83-2 82-9 82-6 82-5 82-9	200		41.	916 983 983 983	3	-1		1.0	686 013 267 666	•	2 75	J	0-00	15.00 	18.0 19.0 17.5	8.07		
18 19 20		82.9 83.1 82.8 82.8	500 933		41.	88 3 88 3 98 3	3	i		1.2	252	8	2.37		6•03 E•53 6•03	10.00 14.00 8.00	18•0 13•5 18•0	10.75)	
21 - 22 23 24		82.7 82.7 82.8	1500 1933 1500		41. 41. 41.	916 916 916 916 916				1.3	668	7 🖅	2 • 27		7 00 0 00 9 00 9 00 3 50	10-00	∴ - 16 • 8) 5 12.67		
25 26 27 28		82.9 83.0 83.0	1933 1157	7	41.	9500 7500		1		1.3	847 933 018 163	5 4 2	2 • 730 1 • 750 • • 930 1 • 830) · · ·		11-50 12.30	19-5			
29 30 31 32	: :	82.5 82.9 83.1 83.0)300		41.	983 883 850 850				1.4	831,	5	2 • 000 5 • 700 2 • 000		3.00	18.10	20-0			
374576	•	52.7 52.7 52.9 52.7	1.67	7 . ·	41. 41. 41.	983 9500 816 916	<u>,</u>	1111	- ۲ -	1.6	3460 554 695 052	5	3.070 2.770 1.850 2.200		- 00 - 00 7 - 00 3 - 90	7.00 7.00 15.00 10.00	18•0 16•0 19•5 19•5		•	
18990		2.9	167		41 • 41 • 41 •	9500 983 783 716		1	· · · · · · · · · · · · · · · · · · ·	1.7	352 967 434 480		2.630		- 00 - 00 - 00 - 00	7.00		8		
41 42 43 44		2 9 33 2 32 9 33 0	933		41. 41.	75CC 8833 7833 9833	3	1		1.9	7628 8078 9627 0480	2 2 2	2.670) 50)) 51	5-03 5-03 5-03 5-03	<u> </u>	20.0 21.0 18.00 19.0			
45 46 47 48		32.9 32.9 33.1 33.0	157		4] . 4] . 4] .	95CC 9167 95CC 883 95CC		i		2.0	1380		1.830	33	- 00 - 00 - 30	10.00 15.50 20.00	21 • 5 19 • 4 12 • 1 14 • 0	B•175		:
49 50 51 52	1	3.0 32.9 32.6 33.1	500	 	41. 41. 41.	95 CC 85 CC 98 33 75 CC	}.	1		3.1	1702 5708 5978 7236	5	5-050 6-150 5-070		- 00 - 00	8-10 6-00 10-00	20-05 13-55 15-65	5-375 9-043		
134 556 56			167 167 500	, ,)	41. 41. 41.	28 33 8167 98 33 75 00	3	1	•	2.2	9403 2287 6622 6656		3 350 4 535 4 800 1 200	23	- 03 - 03 - 03	20-J0 6-25 10-50 20-J0	20.0 12.0 11.0 16.0	9.673		
		2.6 2.6 3.1 3.1	333 167		41. 41. 41.	9833 9500 9500 8500		1		2.4	5134 6680 1554 3028				- 07	\$ •30 8 •30 6 •50	16-0 11-8 12-1 20-5	13-873		
- 61 - 62 - 63 - 64		3.0	500 333 333		41. 41.	7833 2500 8500 8500		-1 1 1		2.5	4210 4280 0882		3 970 2 370 2 670 3 570	19	- 00	20.50 4.70 12.50 23.50	11.02 17.03 23.03	. :		• •
		3.1	333		41.			1	•	2.8	2611 9068 4799 3220		1.550	20	• 00	25.30 23.30 10.30	17-03			
		3.4	200 167 157	·	41. 41. 41.	916/ 2500 1500	<u></u>			2.9	6692 2613 0712 1107 4.)41		2 000	35	• 00 • 00 • 00 • 00	. 25.00	16.00 21.55 15.00 17.00		<u> </u>	
1-		43.2	167 500 500	· · •· ·	41. 41.		 	- <u> </u> . 		3.3	4)41 0595 7432 6353		7.070	70	-00	20.JO 21.9J 9.27 20.JO 20.JO	13.40 14.00 23.50 10.00	8.697		
		3.2	100		41.	28 73 71 67 71 67 91 67 98 33				3.0	1772 1774 1754		9 070 2 070 3 070 2 070 2 070		-73 -03 -53 -03 -03	23.33 5.30 4.20	15.05 23.55 9.05	•		
MED	24	14	ار ما	i	• •			_ 1	4 L		-	_						- ·		
							rigina rigina				-			ata						
							_					•				s data				

Table 49


FIGURE 2. CLUSTER ANALYSIS FLOW CHART

3

DATA BASE AQUISITION

STATION LOCATION INVENTORY (STATION LOCATIONS PLOTTED) VARIABLE INVENTORY - N, MEAN, MEDIAN, STD. ERR., MINIMUM, MAXIMUM FREQUENCY DIAGRAM BY SEASON, MONTH, YEAR, OVERALL CLUSTER ANALYSIS PRELIMINARY - CHLORIDE AND CONDUCTIVITY INDIVIDUAL VARIABLE CLUSTER ANALYSIS MULTIPLE-VARIABLE CLUSTER ANALYSIS GRID ANALYSIS TO DETERMINE FUTURE STATION PATTERN

SEASONAL VARIABILITY TO DETERMINE FUTURE SAMPLING SCHEDULE

)

)

)

.

3

)

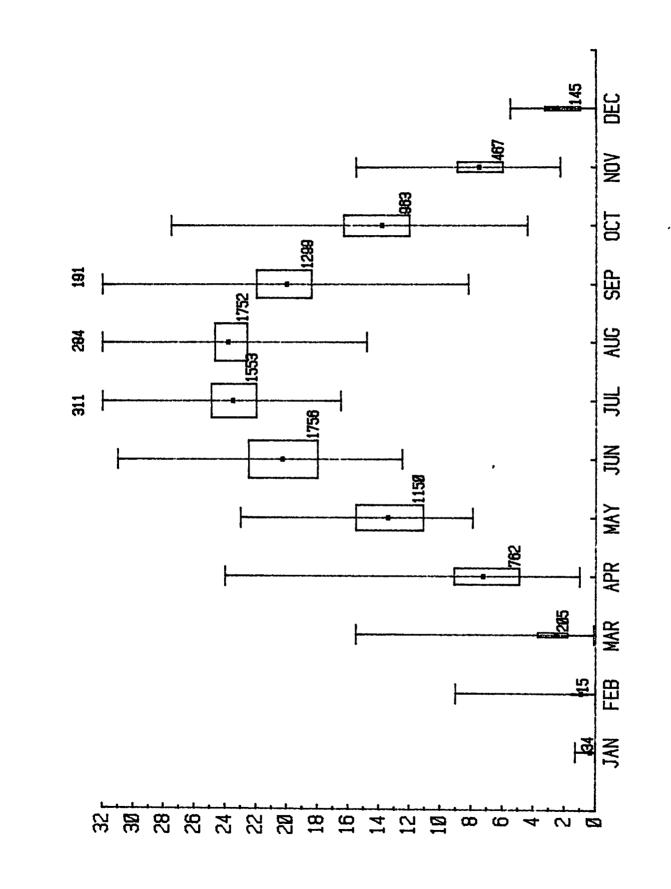
٢

(After Reckhow, 1980)

PAGE 83

CONCENTRATION

3


)

)

٢

)

~

<u></u>

3

473 5Ø7 1100 667 819 690 643 76Ø 466 400 r 35Ø 300 28 470 **_**584 1139 745 25Ø 973 **1**4Ø 825 869 11323 17 200 150 143 34 100 JAN MAR APR JUN DEC FEB MAY JUL AUG SEP OCT NOV

•)

)

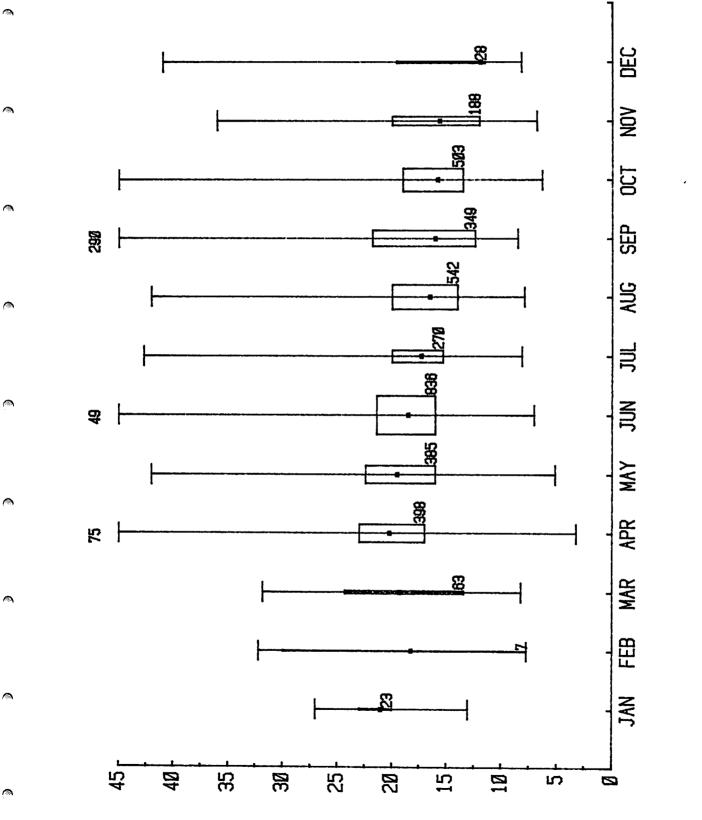
)

)

)

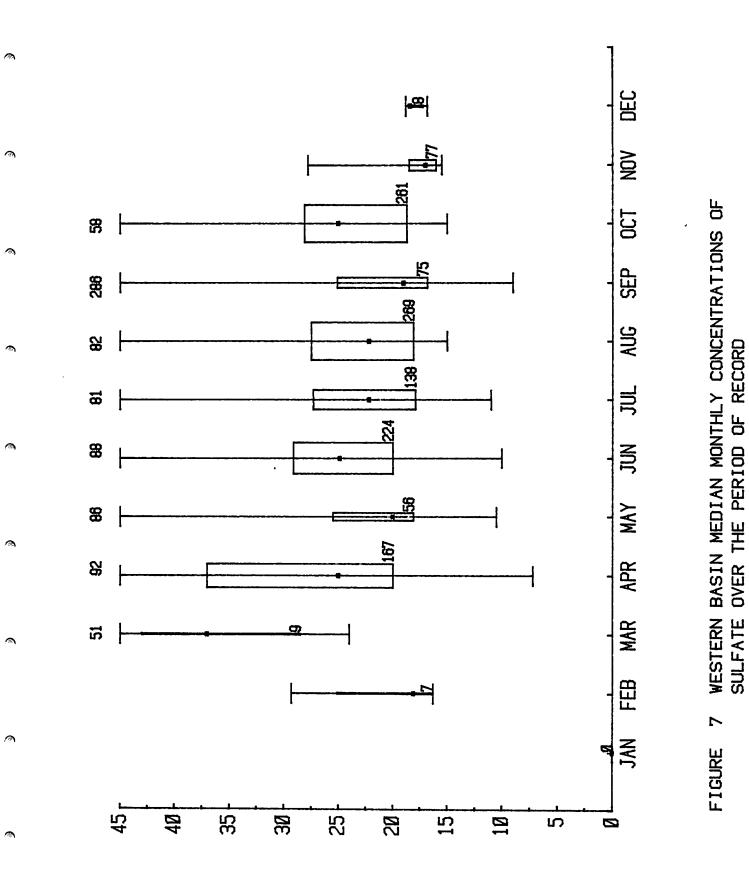
FIGURE 5 WESTERN BASIN MEDIAN MONTHLY CONDUCTIVITY VALUES OVER THE PERIOD OF RECORD PAGE 85

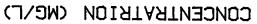
(MMHOS/CM)


)


٢

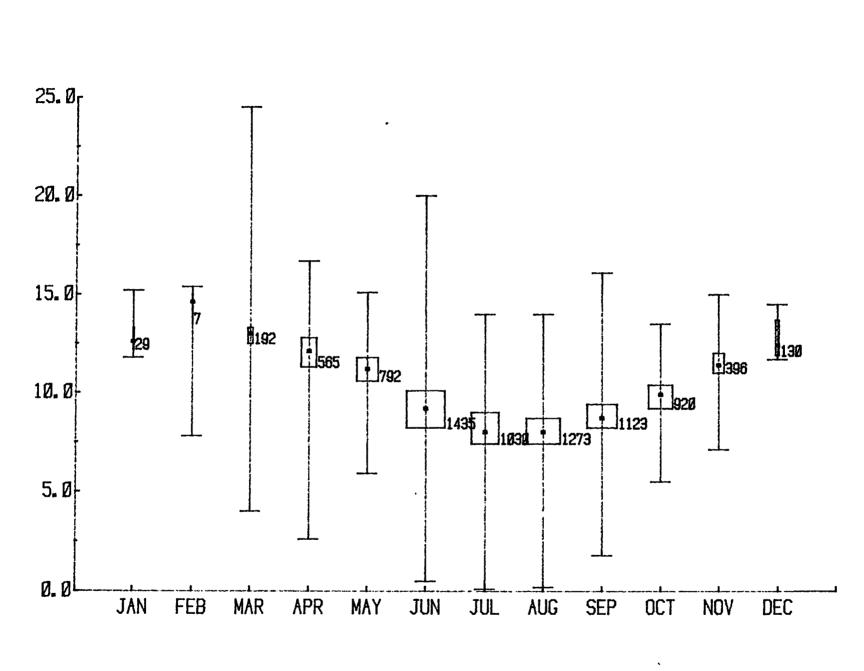
٢


)


)

WESTERN BASIN MEDIAN MONTHLY CONCENTRATIONS OF CHLORIDE OVER THE PERIOD OF RECORD ഗ FIGURE

CONCENTRATION (MG/L)


)

)

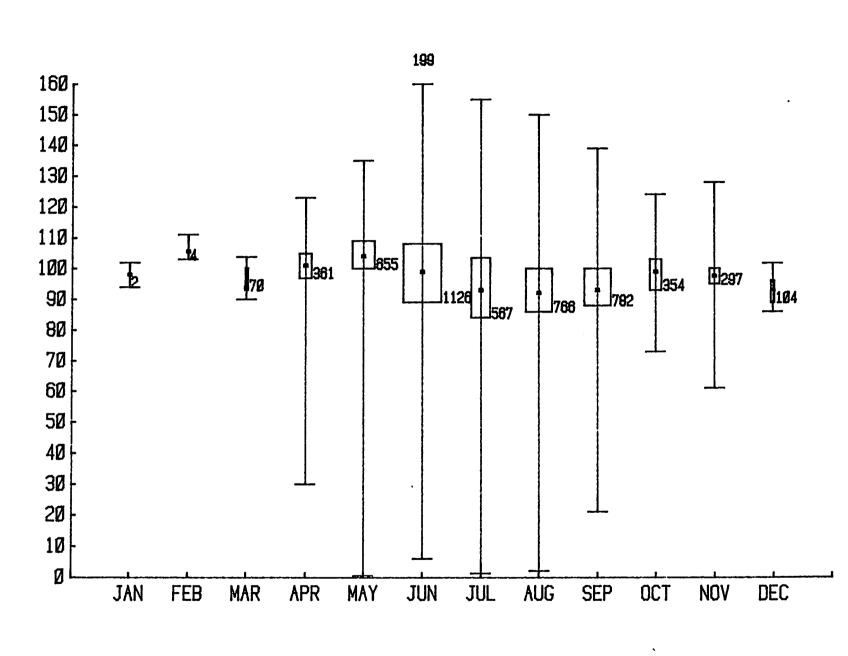
2

9

)

)

)


٢

)

)

)

FIGURE 8 WESTERN BASIN MEDIAN MONTHLY CONCENTRATION OF DISSOLVED OXYGEN OVER THE PERIOD OF RECORD

٢

)

۵

)

)

٢

FIGURE 9 WESTERN BASIN MEDIAN MONTHLY DISSOLVED OXYGEN PERCENT SATURATION OVER THE PERIOD OF RECORD

PERCENT SATURATION

٢

۲

)

)

)

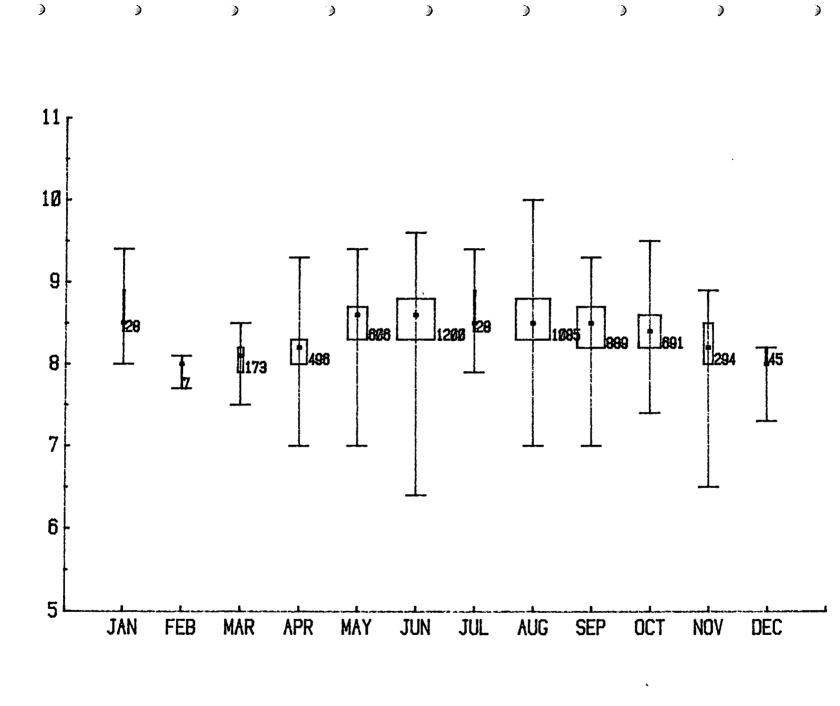
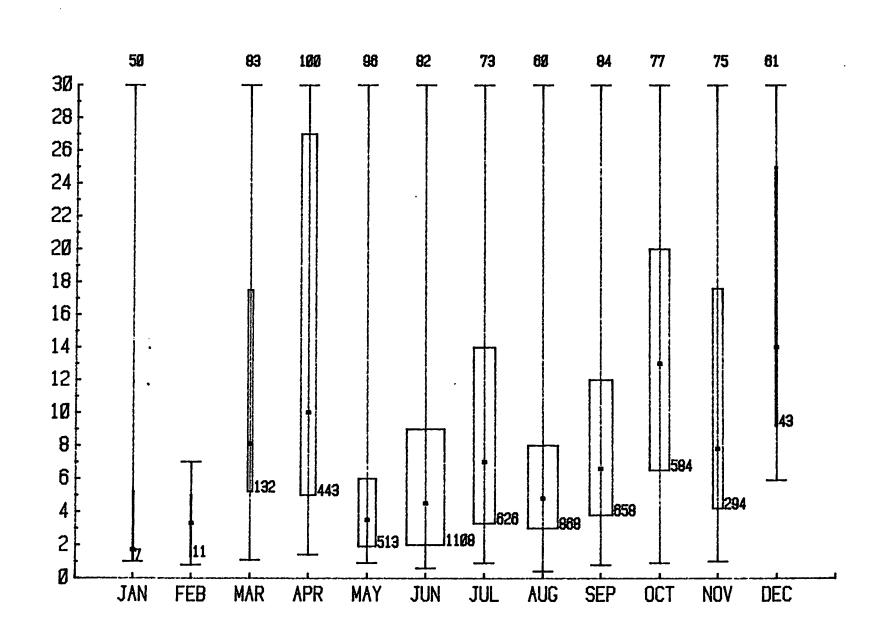


FIGURE 10 WESTERN BASIN MEDIAN MONTHLY PH VALUES OVER THE PERIOD OF RECORD PAGE 90

TURBIDITY (JTU)


)

3

٩

)

)

٢

)

)

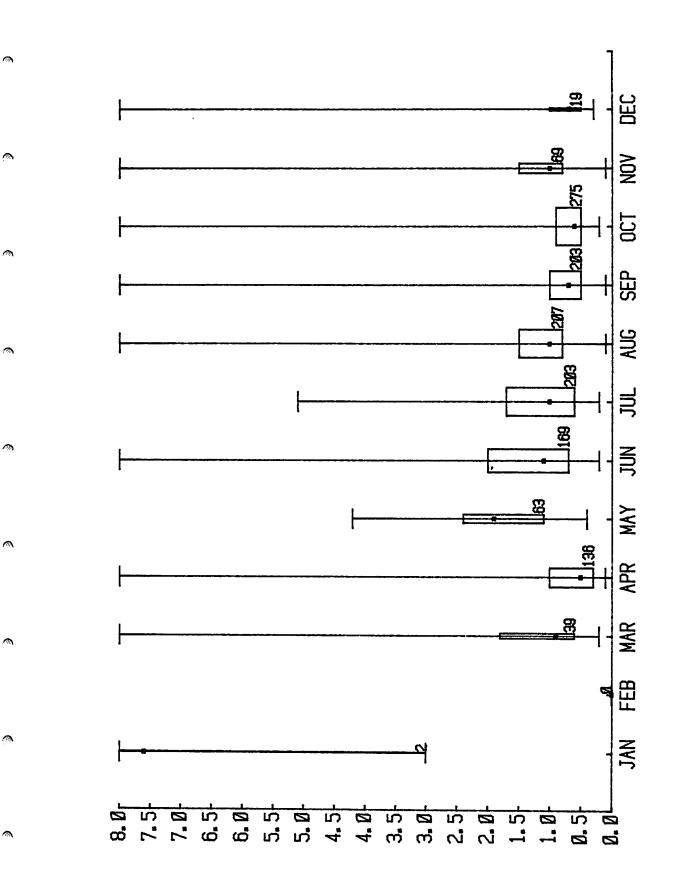

)

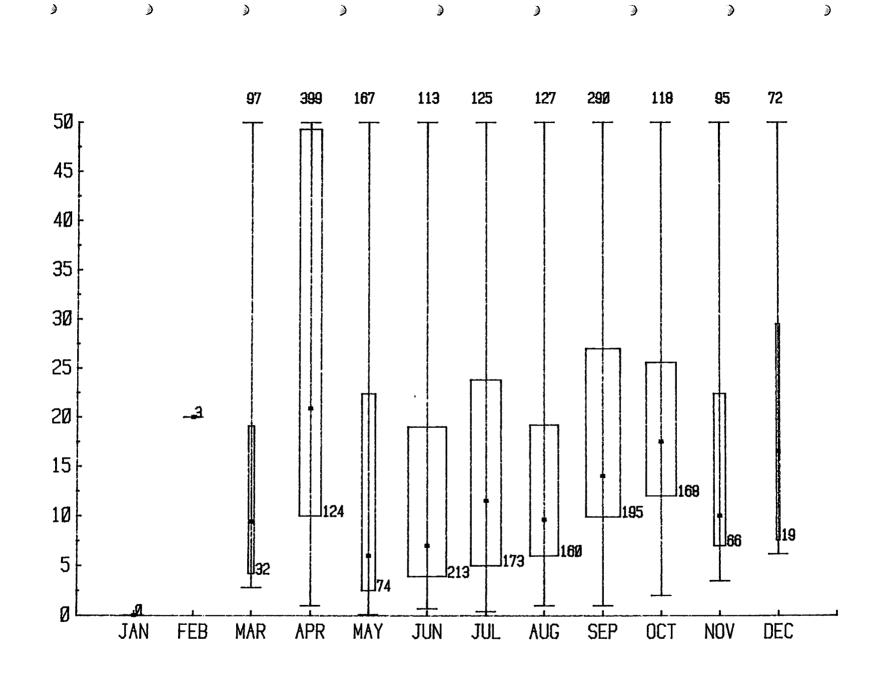
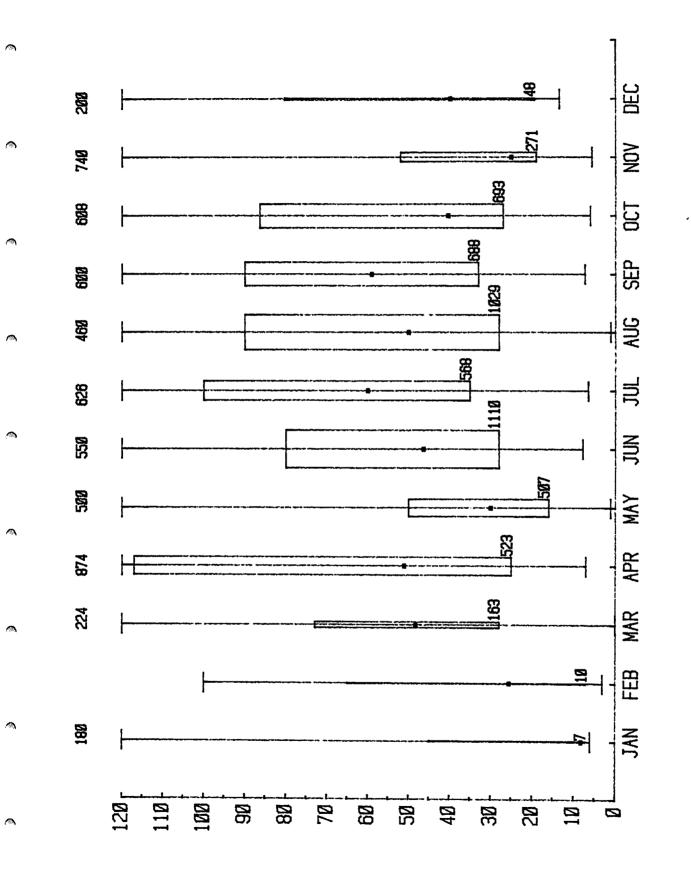
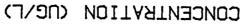
FIGURE 11 WESTERN BASIN MEDIAN MONTHLY TURBIDITY VALUES OVER THE PERIOD OF RECORD

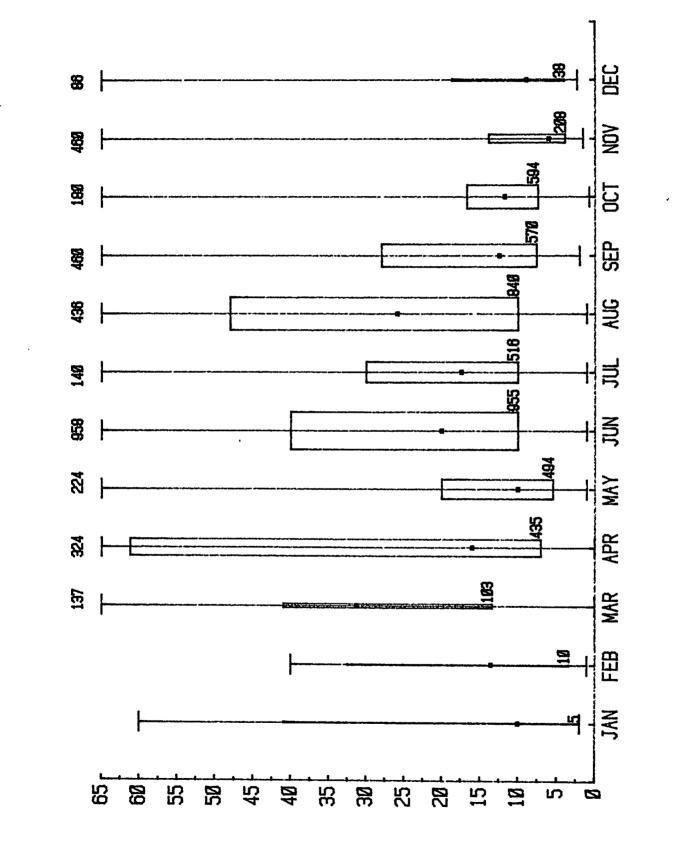
PAGE 91

)

CONCENTRATION (MG/L)

)


FIGURE 13 WESTERN BASIN MEDIAN MONTHLY CONCENTRATIONS OF TOTAL SUSPENDED SOLIDS OVER THE PERIOD OF RECORD PAGE 93

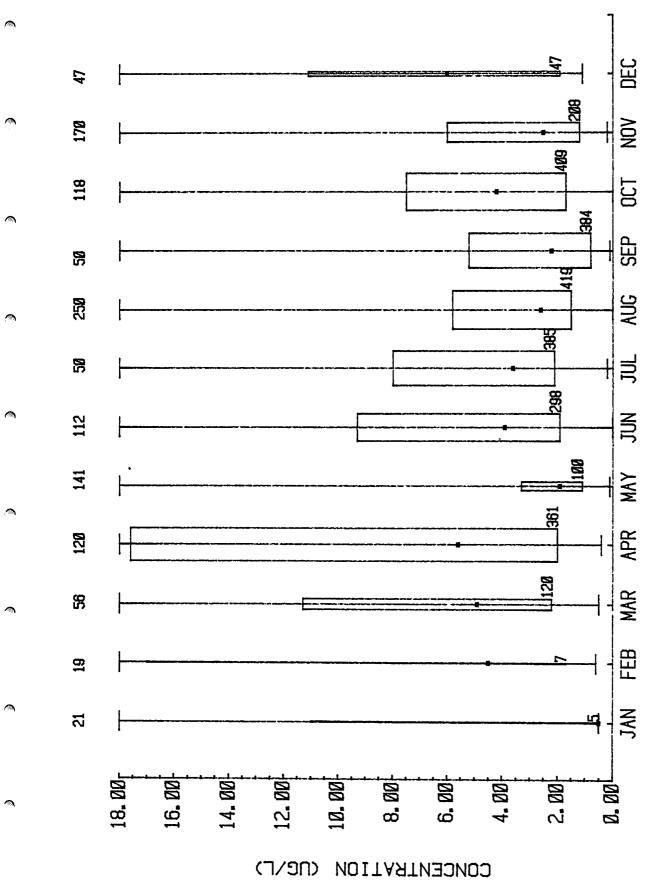
1

1

1

ß

CONCENTRATION (UG/L)


PAGE 95

TOTAL DISSOLVED PHOSPHORUS OVER THE PERIOD OF RECORD

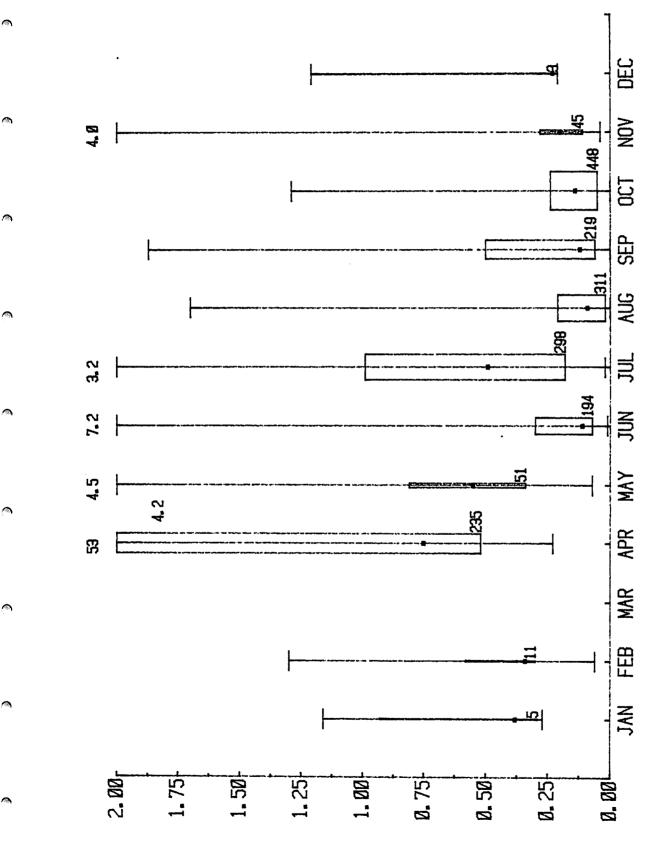
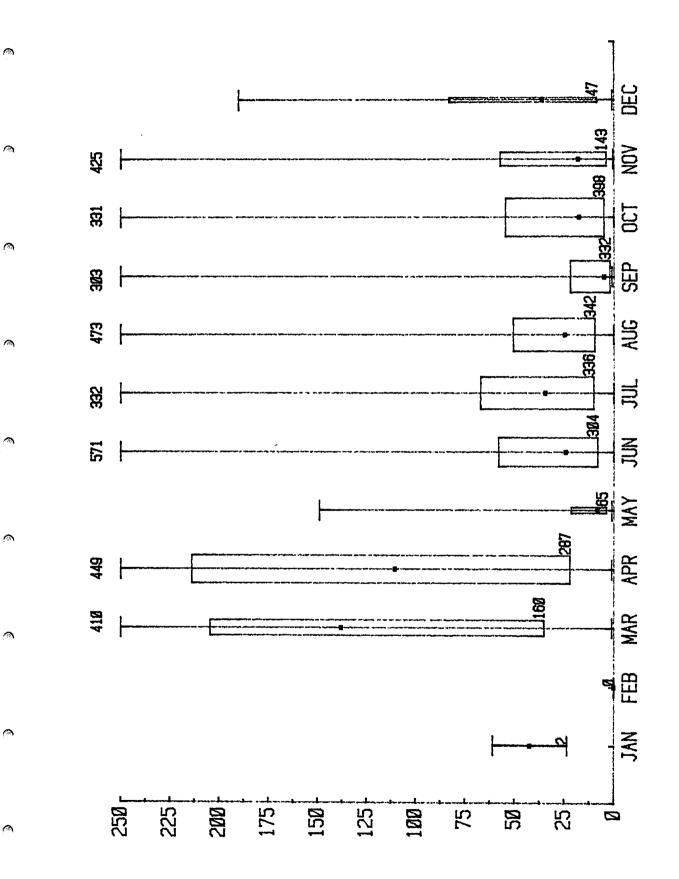
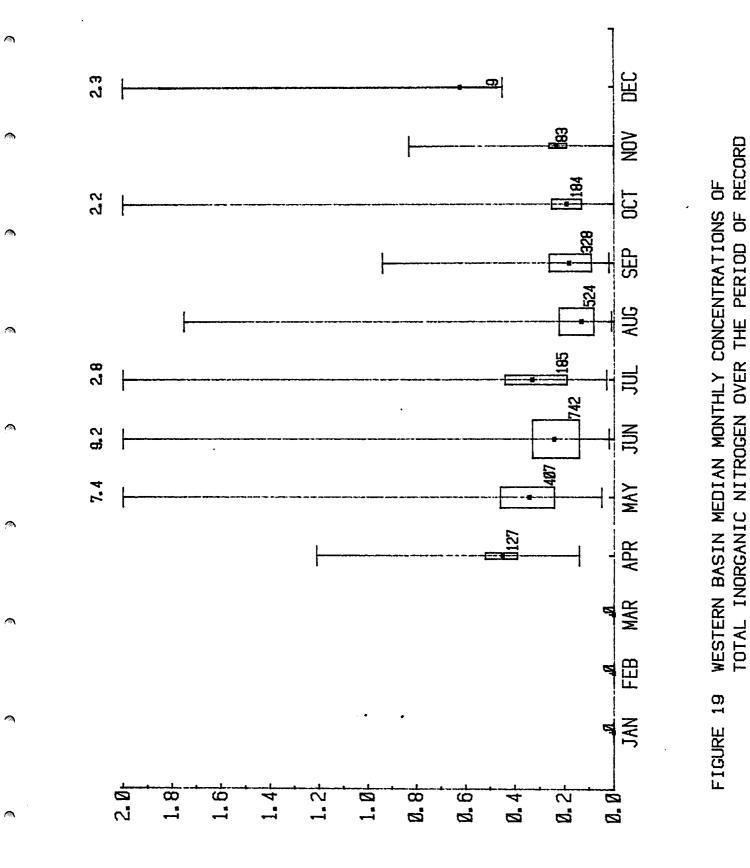

WESTERN BASIN MEDIAN MONTHLY CONCENTRATIONS OF

FIGURE 15



CONCENTRATION (MG/L)

PAGE 97



(M

AD.

CONCENTRATION (MG/L)

1

CONCENTRATION (MG/L)

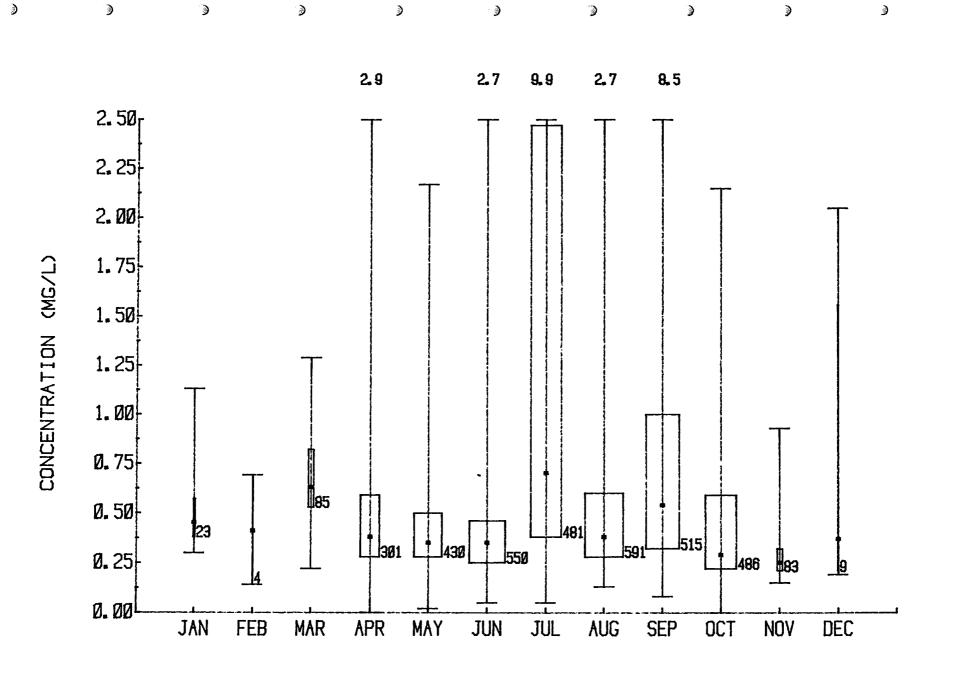


FIGURE 20 WESTERN BASIN MEDIAN MONTHLY CONCENTRATIONS OF KJELDAHL NITROGEN OVER THE PERIOD OF RECORD PAGE 100

)

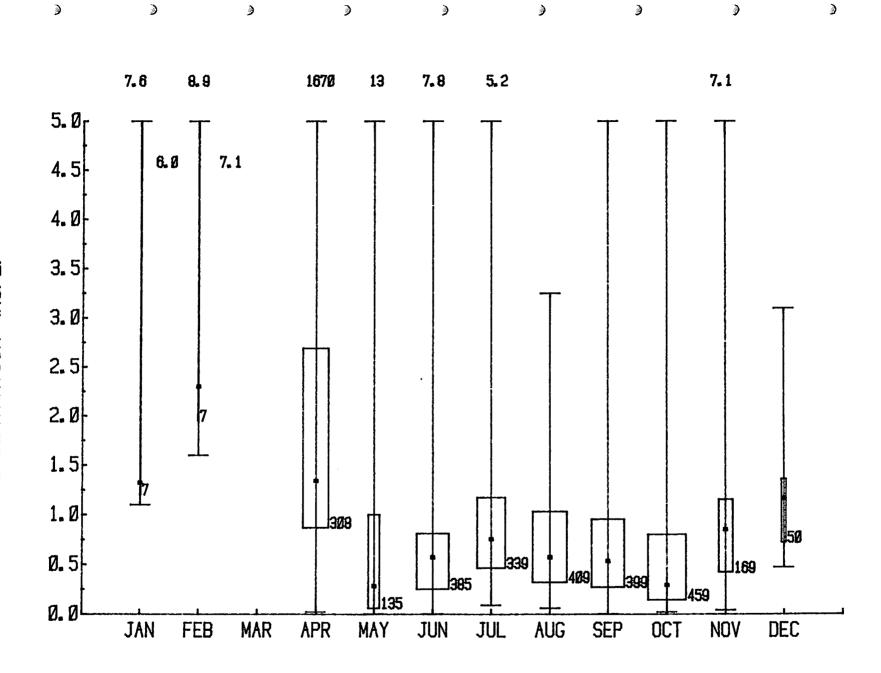
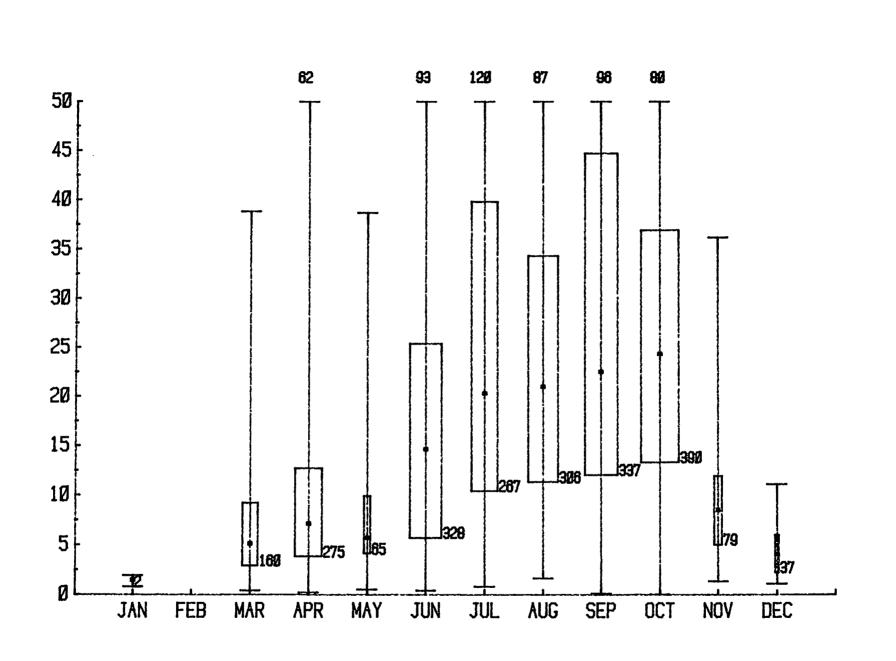


FIGURE 21 WESTERN BASIN MEDIAN MONTHLY CONCENTRATIONS OF TOTAL DISSOLVED SILICA OVER THE PERIOD OF RECORD PAGE 101

)

CONCENTRATION (MG/L)

CONCENTRATION (UG/L)


)

)

٢

)

)

)

)

)

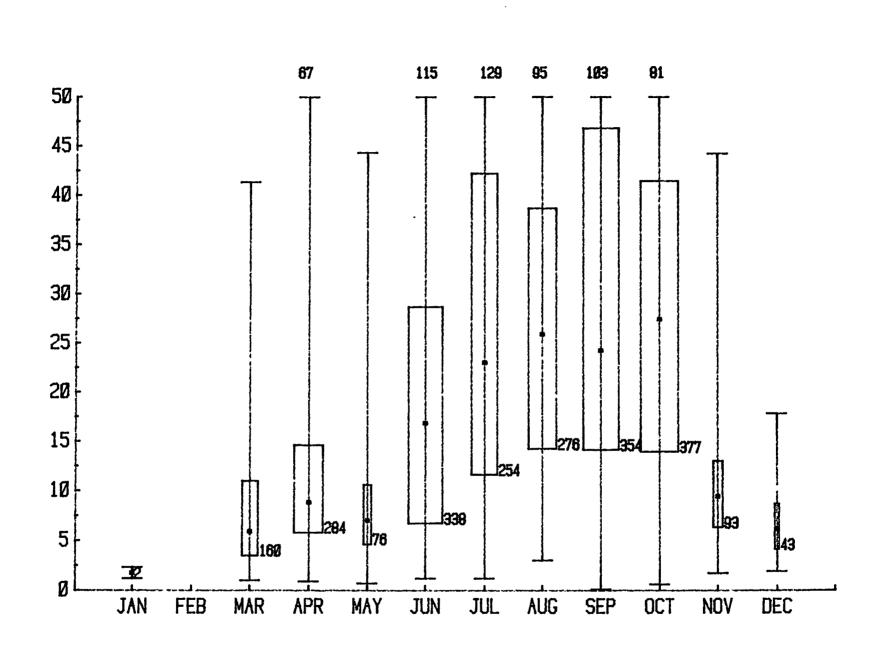
٢

)

)

FIGURE 22 WESTERN BASIN MEDIAN MONTHLY CONCENTRATIONS OF TOTAL CHLOROPHYLL A OVER THE PERIOD OF RECORD

CONCENTRATION (UG/L)


)

)

)

)

)

٢

)

)

9

٢

FIGURE 23 WESTERN BASIN MEDIAN MONTHLY CONCENTRATIONS OF CORRECTED CHLOROPHYLL A OVER THE PERIOD OF RECORD)

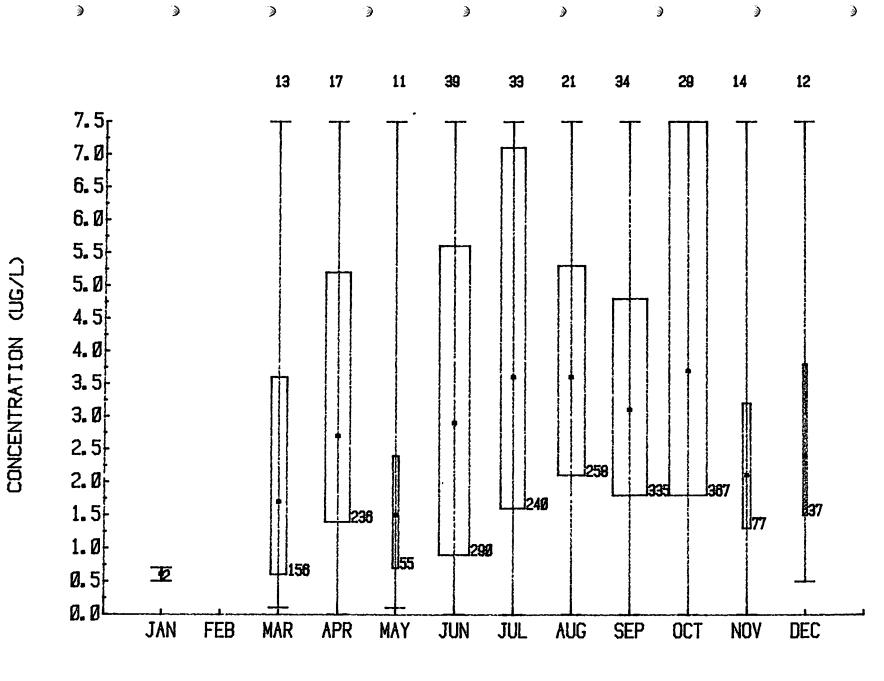


FIGURE 24 WESTERN BASIN MEDIAN MONTHLY CONCENTRATIONS OF PHEOPHYTIN OVER THE PERIOD OF RECORD

PAGE 104

٢

)

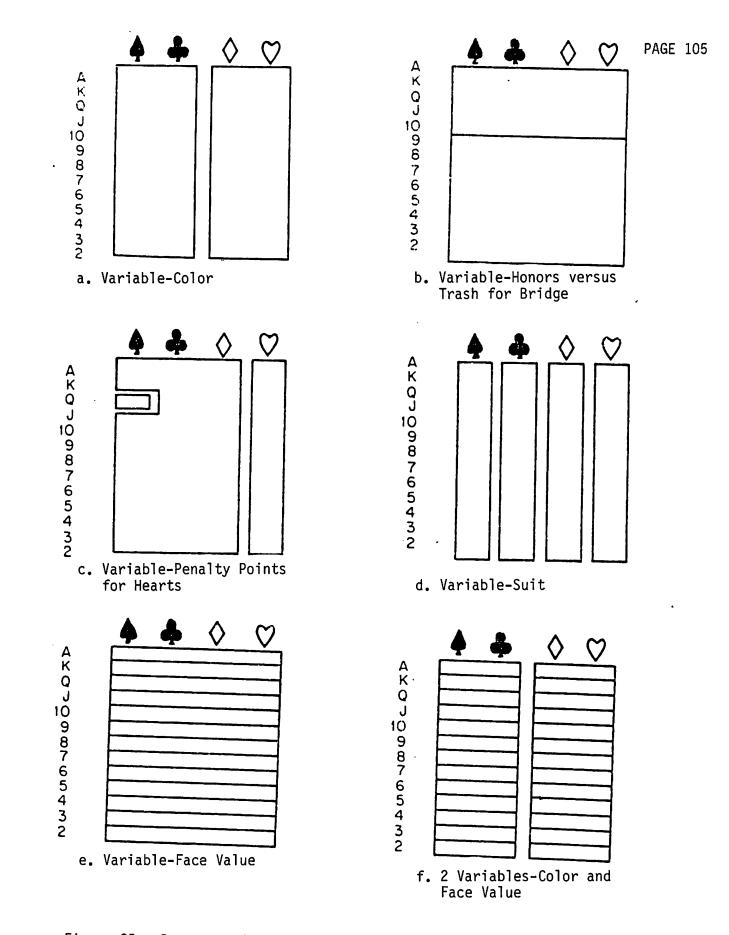
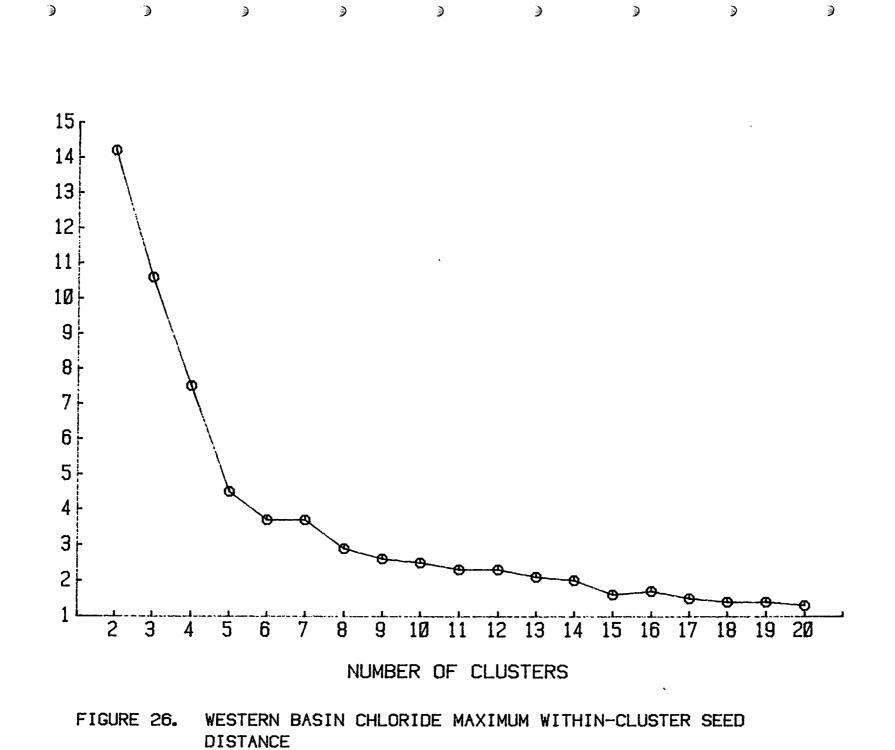


Figure 25. Demonstration of the Importance of Variable Selected on the Cluster Results (Revised from Anderberg 1973)

M

A

1

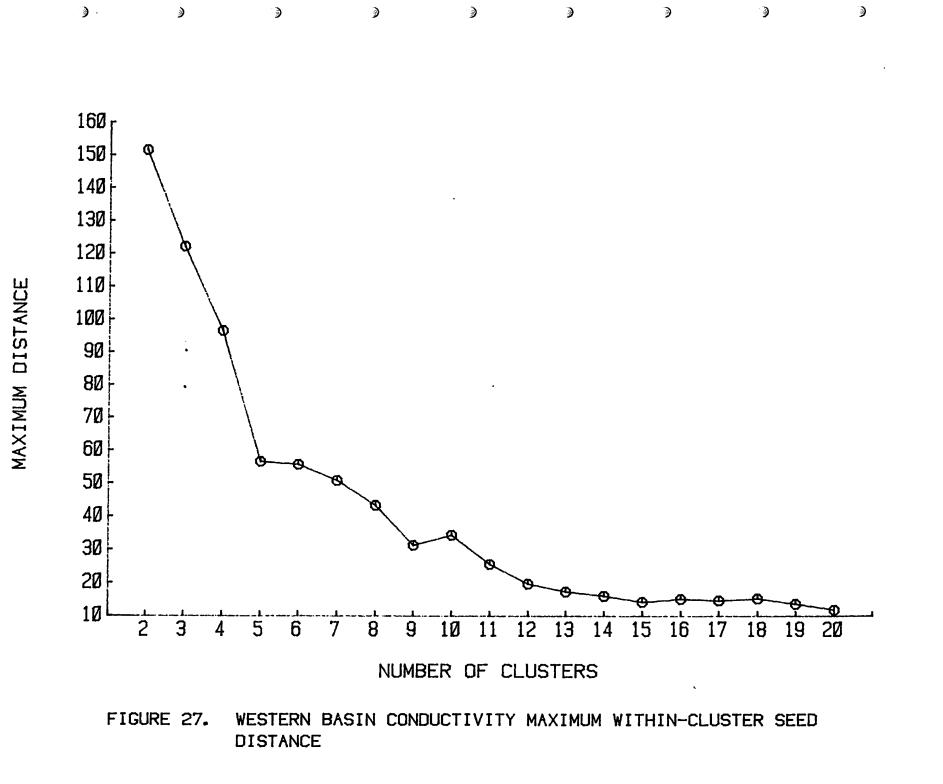

1

1

1

P

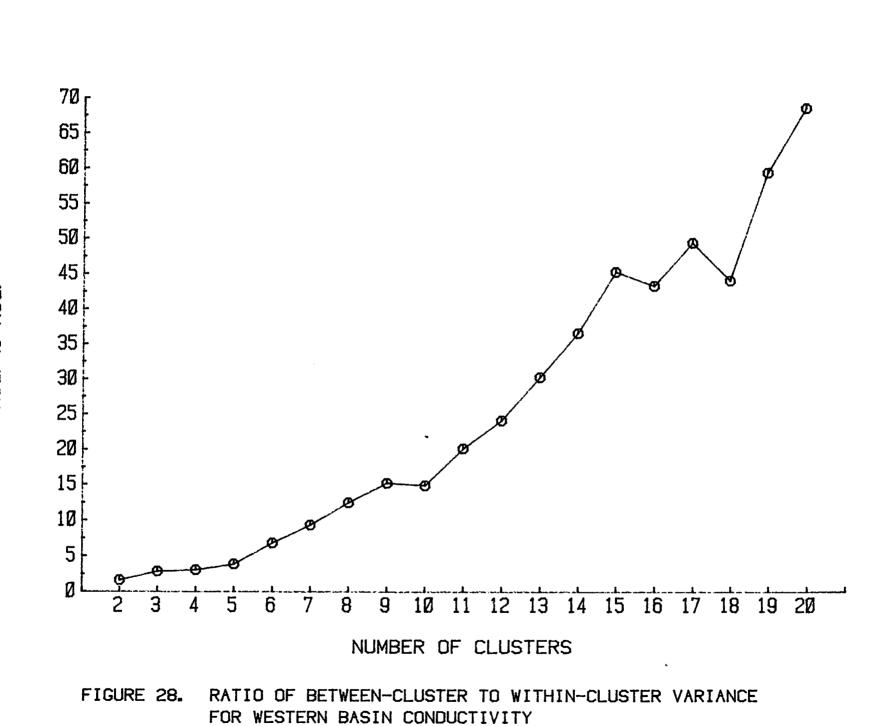
<u>@</u>



MAXIMUM DISTANCE

)

PAGE 106


)

)

PAGE 107

)

)

)

٢

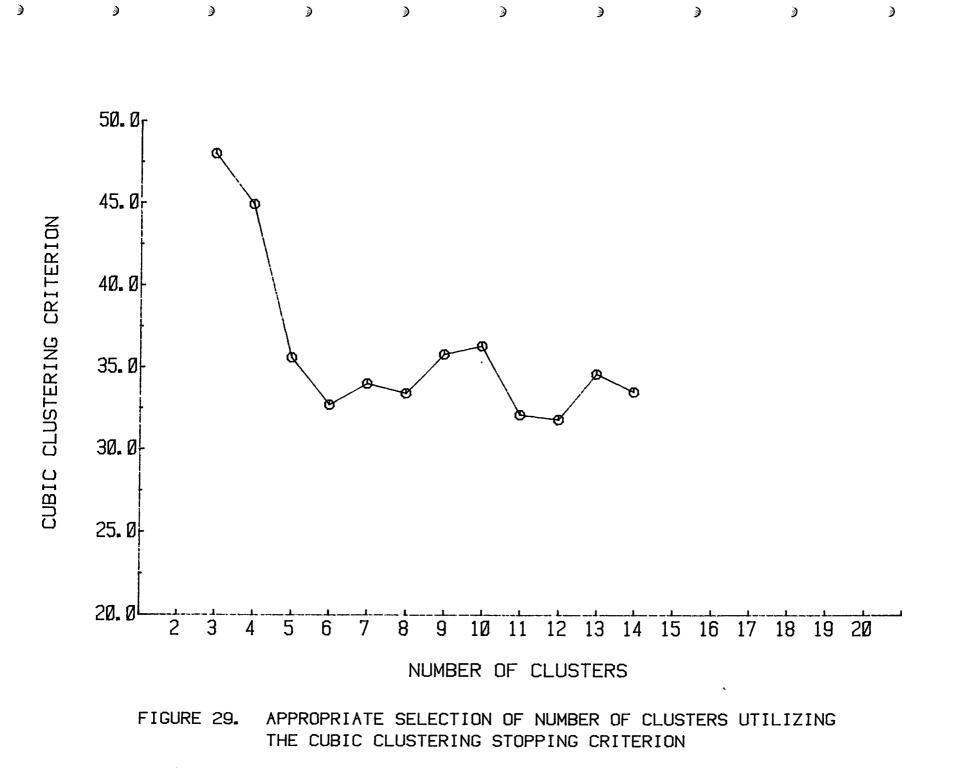
)

٦

)

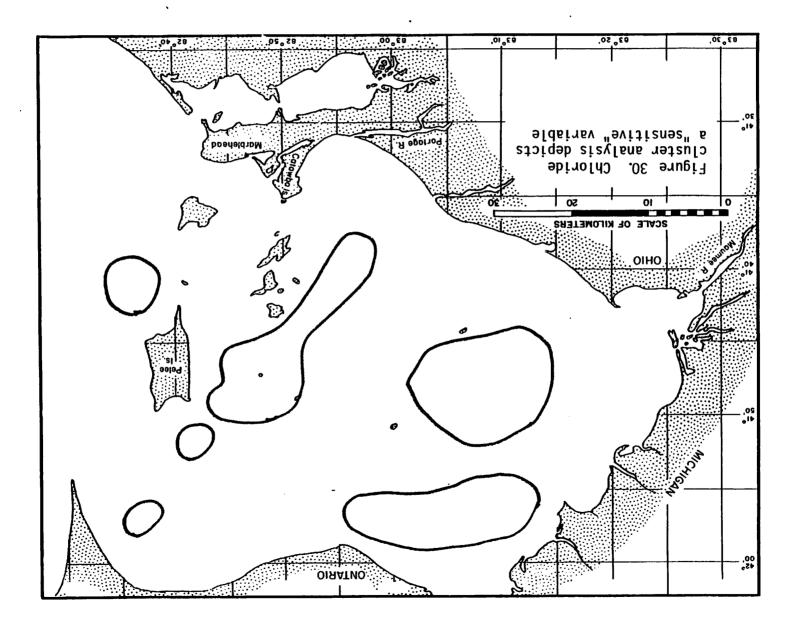
RSa/(1-RSa)

3


٢

۶

۵


)

PAGE 108

PAGE 109

)

(

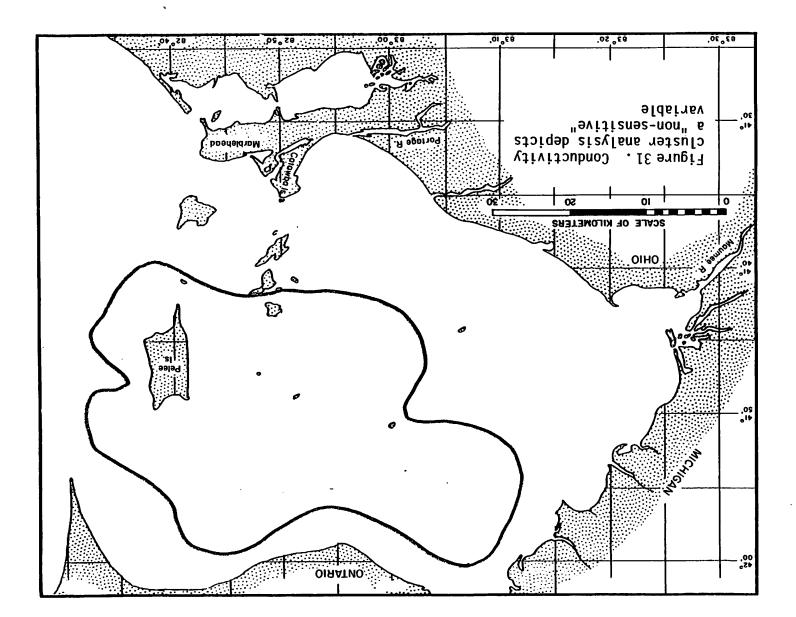
C

(

C

6

(


(

C

¢

0

(

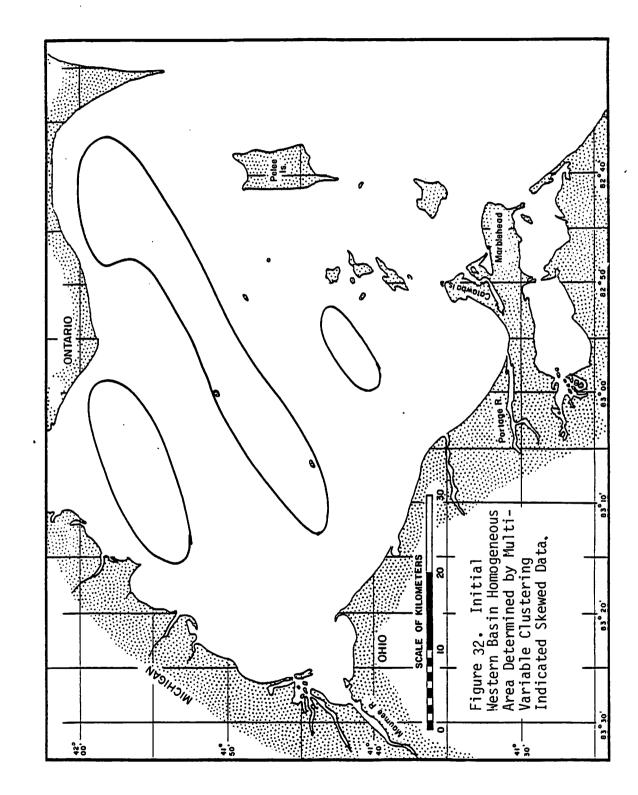
¢

C

C

€

C


(

C

6

((

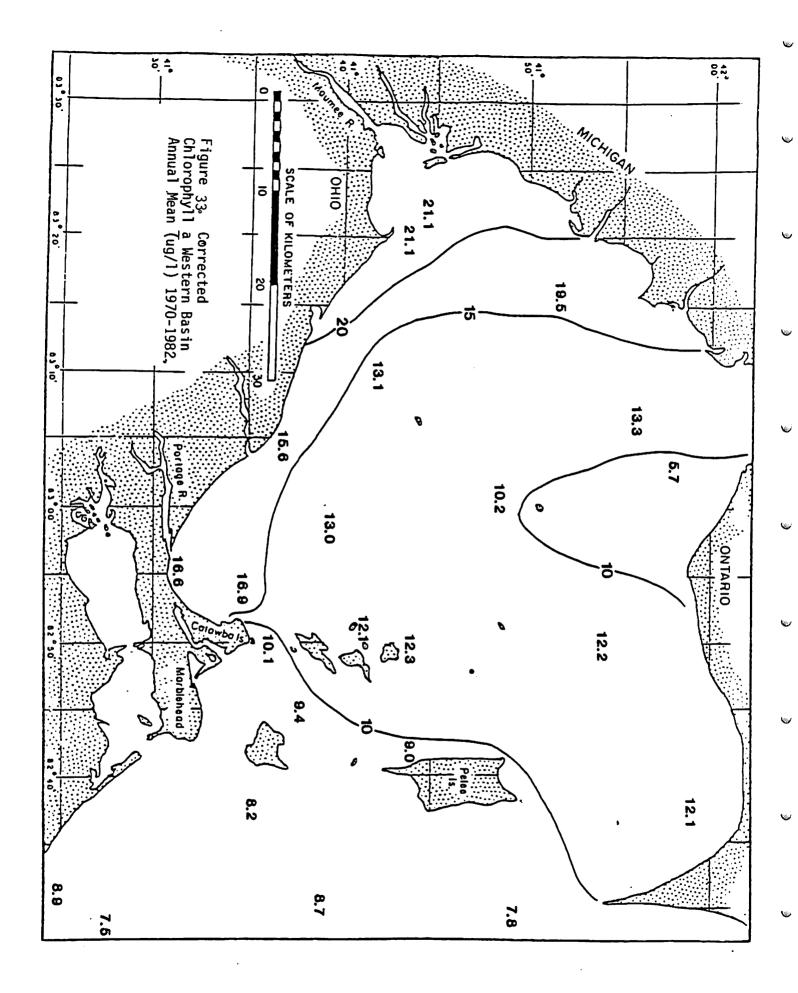
(

(M)

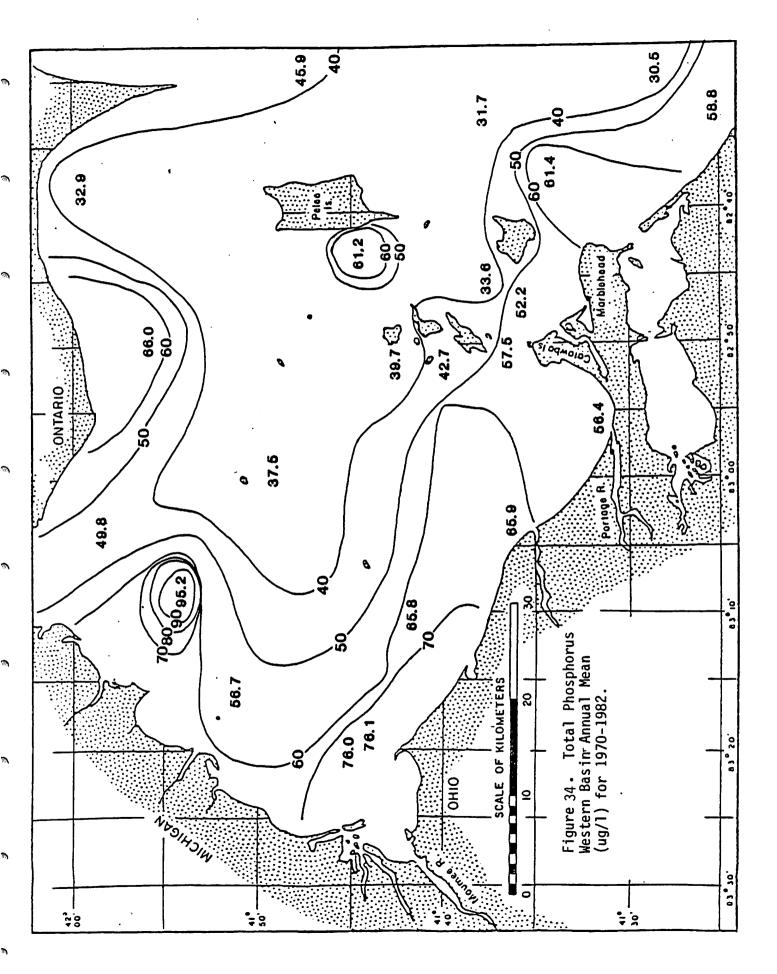
Â

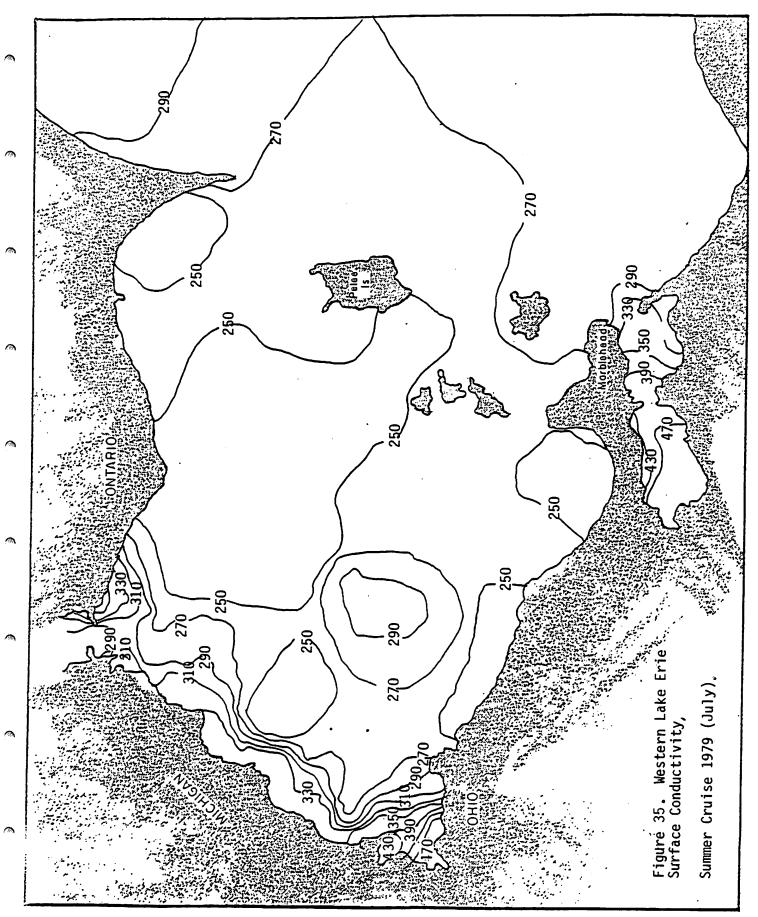
1

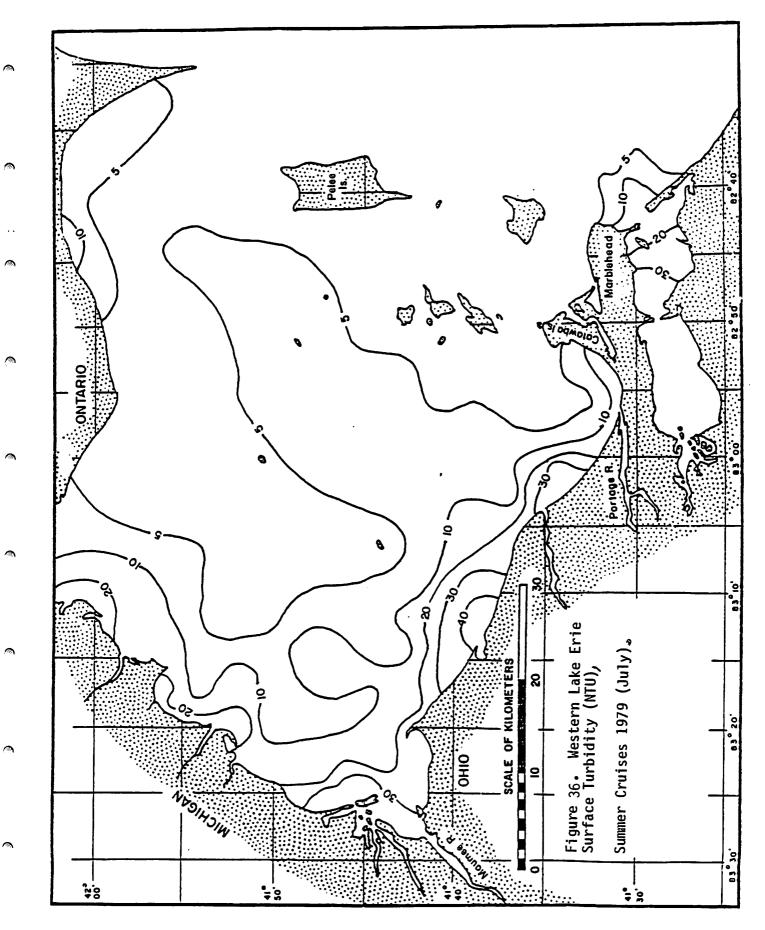
P

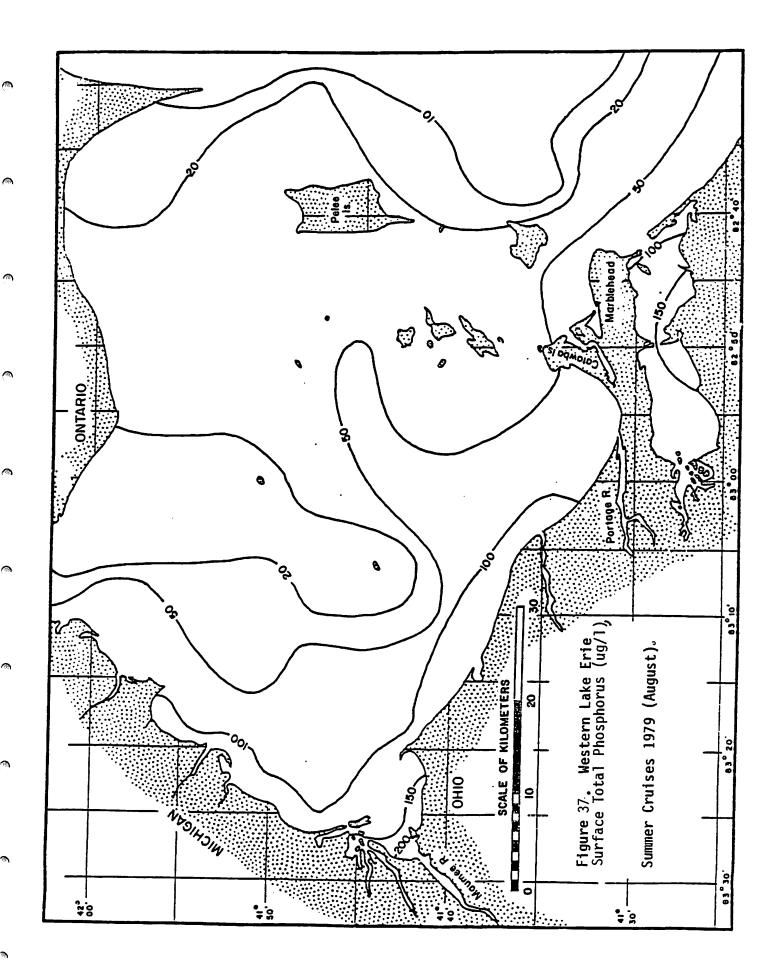

æ

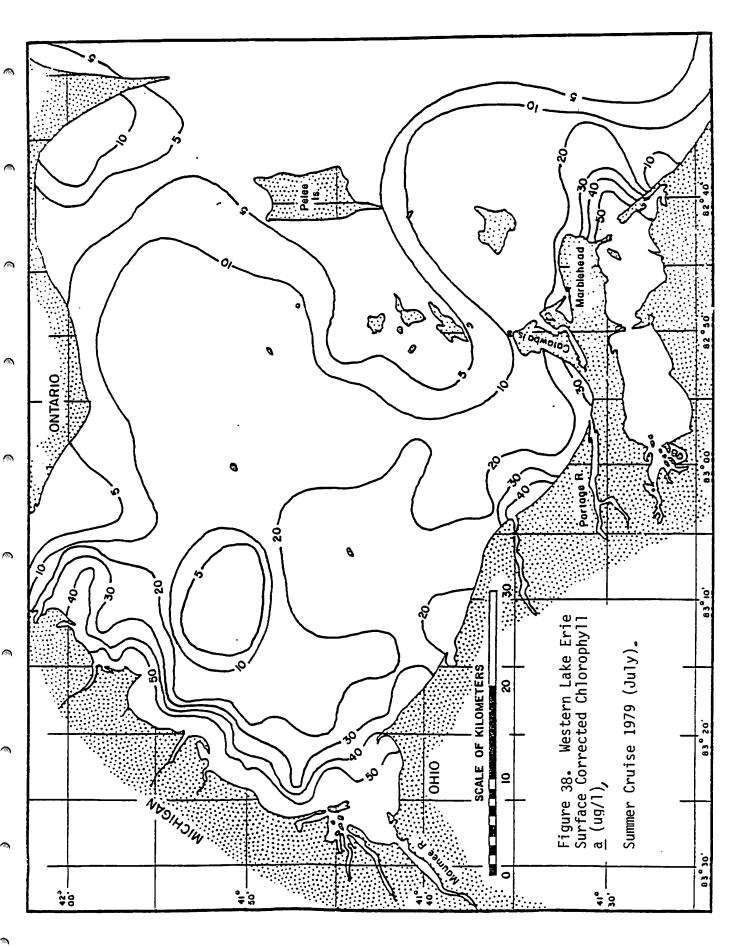
M

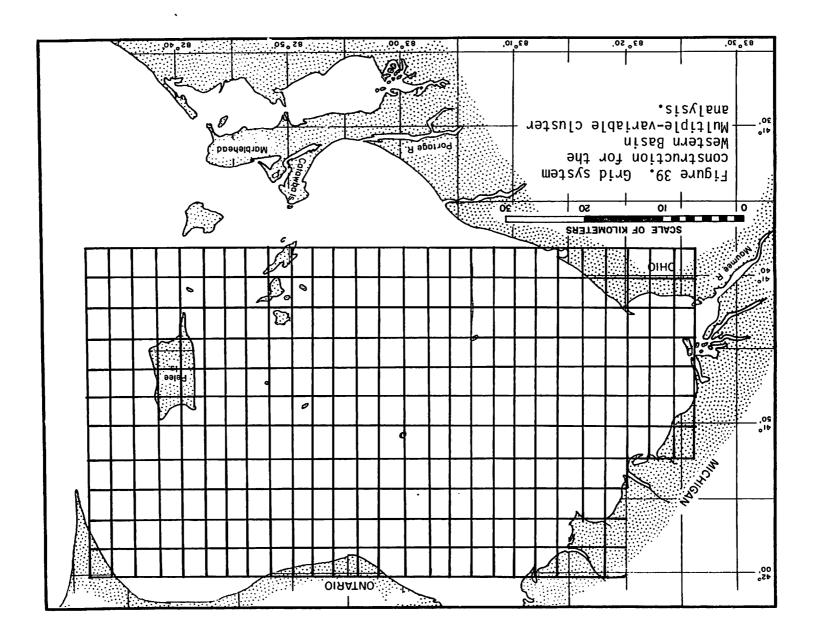

1


 \mathcal{M}


PAGE 112




PAGE 113



C

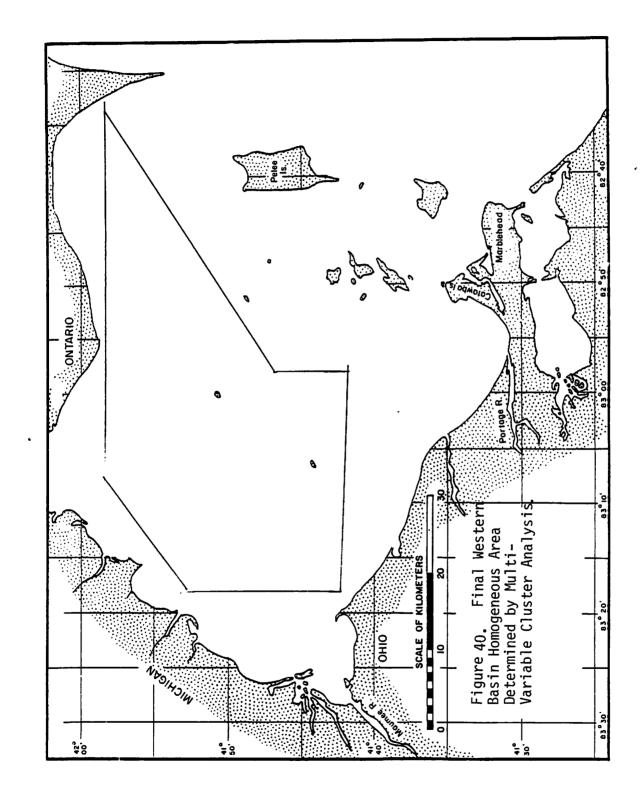
¢

Ć

6

e!

6


€.

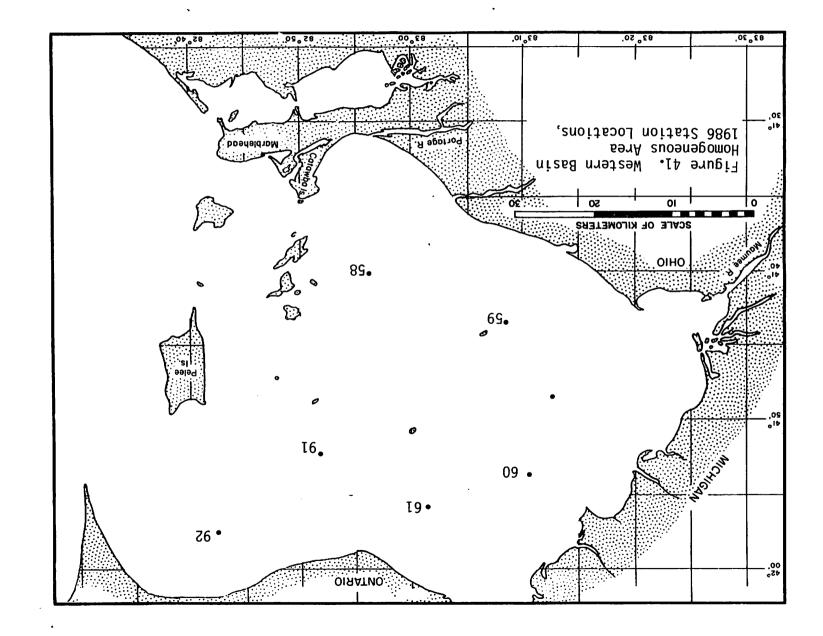
C

PAGE 119

C

٤.

1


1

9

-95-2

PAGE 120

•

C

(

¢

alle.

PAGE 121

6

C

6

BIBLIOGRAPHY

Anderberg, M.R., 1973. Cluster Analysis for Applications. Academic Press, New York.

0

1

ጫ

- Anderson, J.E. 1982. Analysis of Dissolved Oxygen in Lake Erie (1967 1980) From Measured Data Using Cluster Analysis. Masters Thesis. Dept. of Civil Engineering, Univ of Waterloo, Ontario.
- Ball,G.H. and Hall,D.J., 1967. Clustering Technique for Summarizing Multivariate Data. Behav. Sci. 12: 153-157.
- Bartish, T M. 1984. Thermal Stratification in the Western Basin of Lake Erie: Its Characteristics, Mechanisms of Formation, and Chemical and Biological Consequences. M.S. Thesis (Unpubl.). The Ohio State University. 104p. Ohio SeaGrant Technical Bulletin No 21.
- Burns, N.M., 1976. Nutrient Budgets for Lake Erie. J. Fish Res Bd. Can. Vol 33(3):520-536.
- Cooper, M.C. and Milligan, G.W., 1984. The Effect of Error on Determining the Number of Clusters. Ohio State University, College of Administrative Science Working Paper Series WPS 84-2. 17 pg
- Duda, R.O. and Hart, P.E. 1973. Pattern Classification and Scene Analysis. Wiley, New York.
- El-Shaarawi, A.H., 1984 (ED). Statistical Assessment of the Great Lakes Surveillance Program, 1966 - 1981, Lake Erie. National Water Research Institute, Scientific Series No. 136. 273 pages.
- El-Shaarawi, A.H. 1982, Sampling Strategy for Estimating Bacterial Density in Large Lakes. Journal Francais d'Hydrologie 13:171-187.
- El-Shaarawi, A.H., Esterby,S.R., and Dutka,B.J., 1981. Bacterial Density Water Determined by Poisson or Negative Binomial Distributions. Appl. Environ. Microbiol pp 107 - 116.
- Esterby, S.R. and El-Shaarawi, A.H., 1981. Characterization of Spatial and Temporal Variabity of Water Quality Parameters. Summaries of Conference Presentations, Environmentrics 81, Alexandria, Virginia pp 156-157.
- Fay,L.A., 1976. An Investigation of Corrected Chlorophyll a and Pheophytin a in Lake Erie's Western and Central Basins. Thesis, Ohio State University. 177 pages.
- Gengerelli, J.A. 1963. Method for Detecting Subgroups in a Population and Specifying their Membership List. J. Psychology 5:457-468.
- GLISP,1986. Great Lakes Intensive Surveillance Program.International Joint Commission.

Hartigan, J.A., 1975. Clustering Algorithms. Wiley, New York.

1

1

1

- Heimann,S.R. 1972. The Methodology of Cluster Analysis: An Application to Receivables. Dissertation, The Ohio State University. 206 pages.
 - IAGLR, 1985. Detroit River-St. Clair River Special Issue. Volume 11(3):191-418.
- Johnson,R.A. and Wichern, D.W., 1982. Applied Multivariate Analysis. Prentice - Hall Inc., New Jersey. 594 pg.
- Kwiatkowski, R.E., 1985. Importance of Temporal Variability to the Design of Large Lake Water Quality Networks. J. Great Lakes Res. 11(4):462-477.
- Mezzich, J.E., 1975. An Evaluation of Quantitative Taxonomic Methods. Dissertation, Ohio State University, Columbus, Ohio. 505 pg.
- Michalski,R.S., Stepp,R.E., and Diday,E. 1981.Recent Advance in Data Analysis: Clustering Objects into Classes Characterized by Conjunctive Concepts. In : Progress Pattern Recognition, Volume 1.
- Milligan,G.W., 1978. An Examination of the Effect of Error Perturbation of Constructed Data on Fifteen Clustering Algorithms. Dissertation. Ohio State University. 211 pages.
- Milligan, G.W., 1980. An Examination of the Effect of Six Types of Error Perturbation on Fifteen Clustering Algorithms. Psychometrika, 45:325 - 342.
- Milligan,G.W., 1981. Monte Carlo Study of Thirty Internal Criterion Measures for Cluster Analysis. Psychometrika, 46:187 - 199.
- Milligan, G.W. and Cooper, M.C., 1983. An Examination of Procedures for Determining the Number of Clusters in a Data Set. Ohio State University, College of Administrative Science Working Paper Series WPS 83-51. 38 pg.
- Rathke D. E. 1984 (Ed.) 1984. Lake Erie Intensive Study, 1978-1979. EPA-905/ 4-84-001. GLNPO, Chicago, Illinois 183p.
- Ray,A.A., 1982. SAS user's quide : Statistics. Cary, North Carolina. SAS Institute.
- Rechkow, K.H., 1980. Techniques for Exploring and Presenting Data Applied to Lake Phosphorus Concentrations. Can J. Fish. Aquat. Sci. 37:290-294.
- Rosa, F.R., 1986. Lake Erie Central Basin Total Phosphorus Trend Analysis From 1968 to 1982. J. Great Lakes Res. -- Special Issue on Lake Erie; (In Prep)
- Rosa.F.R, and Burns,N.M., 1986. Lake Erie Central Basin Oxygen Depletion Changes From 1929 - 1980. J. Great Lakes Res. -- Special Issue on Lake Erie; (In Prep)

- Sarle,W.S., 1983. Cubic Clustering Criterion. SAS Technical Report A-108, SAS Institute Inc, Box 8000, Cary N.C., 27511-8000.
- Saylor, J.H. and Miller, G.S., 1983. Investigation of the Currents and Density Structure of Lake Erie. Great Lakes Env. Res. Lab., Ann Arbor, Michigan. NOAA Tech. Memo GLERL-49. 80 p.

1

*ر*م

0

- Sly,P.G., 1976. Lake Erie and it's Basin. J. Fish es. Bd. Can. 33: 355-370.
- Sneath, P.H.A. 1977. Method for Testing the Distinctness of Clusters:Test of the Disjunction of Two Cluster in Euclidean Space as Measured By Their Overlap. Mathematical Geology 9:123 - 143.
- Sukhatme, P.V., and Sukhatme, B.V., 1970. Sampling Theory of Surveys with Applications. Iowa State University Press, Ames, Iowa. 452 pg.
- Surveillance Work Group. 1983. Great Lakes Surveillance: Appendix B. 1983 Report on Great Lakes Surveillance to the Water Quality Board. 129p.
- Thomas, R.L., Jaquet, J.-M., Kemp, A.L.W., and Lewis, C.F.M., 1976. Surficial Sediments in Lake Erie. J. Fish Res. Bd. Can. 33(3):385-403.
- Yaksich,S.M., Melfi,D.A., Baker,D.B., and Kramer,J.W., 1982. Lake Erie Nutrient Loads, 1970 - 1980. U.S. Army Corps of Engineers, Technical Report Series, Lake Erie Wastewater Management. 194 pages.

,

(Please read Instructions on the reverse before 1. REPORT NO. 2. 4. TITLE AND SUBTITLE A Determination of the Optimal Samplin Strategy for Assessing Open Lake Water Quality and Tracking Trends in the Western Basin of Lake Erie.	complating	
Strategy for Assessing Open Lake Water Quality and	3. RECIPIENT'S A	
Strategy for Assessing Open Lake Water Quality and		
Tracking Trends in the Western Basin of Lake Erie.		
e and we dettil busin of Eake Effe.	July 1987	ORGANIZATION CODE
. AUTHOR(S)		ORGANIZATION CODE
Laura A. Fay and David E. Rathke	8. PERFORMING	ORGANIZATION REPORT NO
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM EL	EMENT NO
Center for Lake Erie Area Research		
1314 Kinnear Rd. Columbus, OH 43212	11. CONTRACT/G	RANT NO.
	R005815-0)1
2. SPONSORING AGENCY NAME AND ADDRESS	12 TYPE OF DED	
Great Lakes National Program Office	Final	ORT AND PERIOD COVERED
United States Environmental Protection Agency 230 South Dearborn Street	14. SPONSORING	AGENCY CODE
Chicago, IL 60604		
SUPPLEMENTARY NOTES		
6. ABSTRACT This project was undertaken to be		
asin of Lake Erie using the statistical technique of c	ottsnore regio	n in the western
THE YEAR AND THE SULVEL LANCE/ WORLD TO THAT DRAAME WANTA B	MOVIDE AN ENCOURSE	
The worker signality and unit internet there there and shally a	c Cimilan at	
	a nonvocontat	
\sim one negotini busini was mure complex than the the othe	n bacrine due t	· · · · · · · · · · · · · · · · · · ·
\sim one western busing resulting in extensive codimenting	ston column in	
IN IS MALING SCOTH ACCIVILY. IN OTHER TO ADDI WITH +		
estern basin, some subjective selection of the STORET imination of data collected below 5 meters as well as		1 1 1 1 1 1
$\gamma = \gamma =$	\circ on outomotion	
\mathbf{T}	moct concieter.	
\mathbf{w}		
lustering routine: total phosphorus, total dissolved pl nd chloride. The resulting offshore representative rec etermine the number of stations (N=5) moded during for		• • • • • • • • • • • • •
etermination of number of surveys needed to estimate an	nual variabili	programs. The
ANDULA THE SUPERIO SPACAN BUSADAN AN EXTERIZE SAATUMAG AT	herefore requi	
imber of surveys. The minimum_number of surveys needed	Sis in autry is a	ring the greatest
etermination of number of stations (N=5) needed during fur ason. The spring season proved to be most variable, imber of surveys. The minimum ten works and bocument analys DESCRIPTORS	REN ENGER	
ton Quality Class in tons b. IDENTIFIERS/O	PEN ENDED TERMS	c. COSATI Field/Group
b.IDENTIFIERS/O	PEN ENDED TERMS	
ter Quality, Clustering Lake Erie, G	PEN ENDED TERMS	
ter Quality, Clustering Lake Erie, G	PEN ENDED TERMS Great Lakes	
ter Quality, Clustering Lake Erie, G	PEN ENDED TERMS Great Lakes	
ter Quality, Clustering Lake Erie, G	PEN ENDED TERMS Great Lakes	
DISTRIBUTION STATEMENT	PEN ENDED TERMS Great Lakes	c. COSATI Field/Group
eter Quality, Clustering Lake Erie, G	PEN ENDED TERMS Great Lakes	c. COSATI Field/Group 21. NO. OF PAGES
DISTRIBUTION STATEMENT	PEN ENDED TERMS Great Lakes ASS (This Report)	c. COSATI Field/Group

EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE

R E C E I V E D NATIONAL SEA GRANT LIBRARY

C

6

G

G

a

e

ſ

ſ.

C

¢

APR 0 1 2003

Pell Bldg. URI Bay Campus Narragansett RI 02882 USA